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Speaker diarization, the task of ascertaining speaker homogeneity within a collection of 

audio recordings featuring multiple speakers, is crucial for answering queries such as "who 

spoke when". Diverse speaker recordings, encompassing meetings, reality shows, and news 

broadcasts, typically populate the speaker diarization database. Traditional methods 

primarily rely on clustering speaker embeddings, yet these approaches often fail to 

minimize diarization errors effectively and struggle to accurately account for speaker 

overlaps. Addressing these limitations, we propose a robust model leveraging the Fractional 

Ebola Optimization Search Algorithm (FEOSA) for speaker segmentation and diarization. 

This model represents an amalgamation of the Fractional Calculus (FC) concept and the 

Ebola Optimization Search Algorithm (EOSA), thereby enhancing the efficacy of the 

diarization process. The diarization task is executed employing an entropy weighted power 

k-means algorithm, with weights updated via the proposed FEOSA. The proposed FEOSA

demonstrated superior testing accuracy, reaching a maximum of 0.913, and significantly

reduced diarization errors to a minimum of 0.566. Further, False Discovery Rate (FDR),

False Negative Rate (FNR) and False Positive Rate (FPR) were recorded at 0.257, 0.128,

and 0.104 respectively, underscoring the effectiveness of the proposed model in enhancing

speaker diarization.
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1. INTRODUCTION

The proliferation of large-scale audio data, including voice 

mails, broadcasts, meetings, and a myriad of spoken files, has 

led to a significant reduction in cost and an increase in access 

to computational power, storage capacity, and bandwidth [1]. 

This surge necessitates the development of efficient automatic 

human language technologies to facilitate effective indexing, 

searching, and retrieval of these rich informational sources. A 

key element in this process is speaker indexing, where labels 

corresponding to speaker identities are assigned to different 

segments of an audio file [2]. 

An audio file comprises various sources, requiring an 

indexing process that categorizes the signal into speech and 

non-speech signals, the latter of which includes silence, music, 

and noise [3]. With the exponential growth of recorded speech, 

encompassing audio broadcasts, voice messages, and 

television, speaker diarization has emerged as a significant 

task. The objective of this technique is to partition the speech 

signal and isolate signals from the same speaker, essentially 

answering "who spoke what and when" [3]. 

Speaker diarization has found practical applications in 

reports, broadcast news, interviews, debates, and more. It is 

also commonly employed in tasks such as speaker detection, 

broadcast meetings, speaker recognition, video segmentation, 

and multimedia summarization [4, 5]. Diarization tasks, 

particularly audio-based diarization, present a series of 

challenges due to overlapping speech utterances from different 

speakers, background noises, reverberations, and short 

utterances [6, 7]. 

Traditionally, speaker diarization models have relied on 

partitioning the audio stream into speaker-homogenous parts. 

However, these models are often compromised by 

environmental factors like noise and reverberation [8]. 

Speaker diarization typically involves two primary phases [9]. 

The initial phase is segmentation, where audio features are 

refined and a speaker change identification is performed. The 

second phase is clustering, where segments from the same 

speaker are grouped together under the same label [10]. Yet, 

the accurate representation of speech partitions and 

maintaining the purity of each cluster continue to pose 

significant challenges [10]. 

Various clustering techniques have been employed for 

speaker diarization, including K-means, spectral clustering 

(SC), agglomerative hierarchical clustering (AHC) [11], and 

affinity propagation [12]. Among these, bottom-up clustering 

has been the most prevalent approach, starting with individual 

segments and continuously combining adjacent groups until a 

specific criterion is met. Conversely, top-down clustering 

begins by treating the entire audio as a single entity and 

progressively divides it into subclusters. Both strategies, while 

effective, are continuous processes and face the limitation of 

error propagation [3]. 

Recent years have seen the rise of neural network 

embedding as a standard technique for diarization tasks. 

However, most neural network-based speaker embedding 

extractors are trained on large datasets that may not always be 

readily accessible [13]. Training neural networks using raw 

Ingénierie des Systèmes d’Information 
Vol. 28, No. 4, August, 2023, pp. 1091-1106 

Journal homepage: http://iieta.org/journals/isi 

1091

https://orcid.org/0009-0002-1927-6579
https://orcid.org/0000-0002-0645-1131
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.280429&domain=pdf


 

waveforms is a recent trend that discards the feature extraction 

pipeline and yields better results for tasks like speech 

recognition [14, 15], speaker verification [16], and emotional 

identification [17, 18]. Despite these advances, constructing an 

end-to-end objective function for speaker diarization issues 

that is invariant with respect to speaker order and number 

remains a challenging task [12]. 

This article's primary goal is to develop an effective 

framework for speaker segmentation and diarization using the 

proposed Fractional Ebola Optimization Search Algorithm 

(FEOSA). A set of features, including Mel Frequency Cepstral 

Coefficients (MFCC), Linear Prediction Cepstral Coefficients 

(LPCC), Line Spectral Frequency (LSF), Zero Crossing Rate, 

Spectral Skewness, Spectral Rolloff, Logarithmic Band Power, 

Spectral Spread, Fast Fourier Transform (FFT), Spectral 

Centroid, and Power Spectral Density, are extracted from 

audio input samples for further processing. Subsequently, 

speech activity is identified to distinguish speech signals from 

non-speech ones. Speaker segmentation is then carried out 

based on speaker change detection, where constant thresholds 

are computed using the proposed FEOSA, a novel technique 

developed by integrating the concept of Fractional Calculus 

(FC) with the Ebola Optimization Search Algorithm (EOSA). 

The final step involves speaker diarization or clustering, where 

the same speech signal is grouped into one category using an 

entropy-weighting power k-means algorithm. The weight 

update is heavily reliant on the newly developed FEOSA. 

The primary innovation of this research is the introduction 

of the Fractional Ebola Optimization Search Algorithm 

(FEOSA) for speaker segmentation and diarization. The 

proposed model is premised on a novel algorithm, FEOSA, 

designed to conduct speaker segmentation based on speaker 

change detection. Critical to this process is the computation of 

constant thresholds, which is executed using the newly 

proposed FEOSA. Moreover, the task of clustering is 

accomplished via an entropy-weighting power k-means 

approach, where the weight is updated based on the same 

FEOSA. 

This research paper is organized as follows: Section 2 

provides a comprehensive review of eight recently published 

classical techniques, delineating their respective advantages 

and limitations. Section 3 articulates the workings of the 

proposed FEOSA for speaker diarization. Section 4 presents 

the results and a comparative analysis of the new approach 

against the existing methods. Section 5 concludes the study, 

offering insights into potential future research directions. 

 

 

2. RELATED WORK 

 

This section provides the underpinning for the study by 

reviewing eight current publications on speaker diarization. 

The strengths and limitations of each study serve as the 

impetus for the development of a more effective model for 

speaker segmentation and diarization. 

The pertinent studies are summarized as follows: 

VijayKumar and Rao [3] developed a bottom-up speaker 

clustering technique enabled by active learning, aiming to 

improve diarization performance with minimal human 

intervention. Their approach comprised two phases-

exploratory clustering and constrained clustering-wherein an 

active learning algorithm was utilized to generate precise 

speaker models and facilitate audio grouping. Despite 

achieving a significant reduction in the diarization error rate 

(DER) using a limited number of queries, the method showed 

insufficiencies in addressing human errors. 

Karim et al. [10] proposed a model for speaker clustering in 

speaker diarization using the differential evolution (DE) and 

K-means algorithm. The model employed two norms—trace 

within criterion (TRW) and variance ratio criterion (VRC)-as 

grouping validity indices. Despite the superior results 

compared to non-hybrid algorithms, the model was not tested 

with various clustering validity criteria such as Davies and 

Bouldin (DB) index and Clustering Separation criterion (CS). 

Ahmad et al. [8] introduced a Long Short-Term Memory 

(LSTM)-based speech enhancement block for the speech 

diarization process, fine-tuned on an artificial dataset with 

over 100 types of noises. While it successfully reduced speech 

distortion, the complexity of the system increased 

considerably. 

Pal et al. [19] developed the meta-ClusterGAN (MCGAN) 

under the meta-learning framework for speaker diarization. 

Despite the method's high performance on five diverse 

datasets, it has not been tested with various meta-learning 

algorithms. In a separate study, Pal et al. [20] presented a deep 

latent space clustering model for speaker diarization using 

GAN backprojection with the assistance of an encoder 

network. The model outperformed existing x-vector-based 

diarization models, but the utilization of spectrograms as GAN 

input rather than pre-trained embeddings was suggested for 

future work. Ahmad et al. [6] developed a multimodal speaker 

diarization system that utilized an audio-visual 

synchronization system for diarization. While it successfully 

created speaker-specific clusters, it failed to yield satisfactory 

results when multiple speakers spoke simultaneously. Dubey 

et al. [17] implemented a SincNet in a vanilla transfer learning 

(VTL) setup for speaker diarization, achieving remarkable 

results even when trained on sparse data. 

Finally, Wang et al. [12] devised Graph Neural Networks 

(GNNs) for speaker diarization, refining speaker embeddings 

using structural information and mapping them into a new 

embedding space. Despite the model's superior performance 

on both simulated and original meetings, the challenges of 

audio-based diarization remained, including overlapping 

speech from different speakers, distortions, low utterances, 

and reverberations. 

The following encapsulates the contributions and 

shortcomings of each study: 

➢ In the study by VijayKumar and Rao [3], an expected 

speaker-error-based segment selection approach was 

employed, demonstrating superior efficacy over random 

segment selection. However, this strategy failed to 

accommodate the study of human errors, leading to 

potential shortcomings in system performance. 

➢ In the work of Karim et al. [10], a hybrid DE algorithm 

was designed, outperforming non-hybrid algorithms 

concerning indexation outcomes. Yet, it was not 

validated using various clustering validity criteria, such 

as the Davies and Bouldin (DB) index and Clustering 

Separation criterion (CS), thus constraining the 

generalizability of the results. 

➢ Ahmad et al. [8] devised a Long Short-Term Memory 

(LSTM)-based speech enhancement model, proving to be 

an optimal choice for denoising both Additive White 

Gaussian Noise (AWGN) and environmental noises. 

Despite reducing the system error, the enhancement led 

to an increase in the complexity of the system, posing 

challenges in practical implementation. 
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➢ In a separate contribution, Pal et al. [19] utilized pre-

trained placings as input, although a direct examination 

of speech spectrograms could have been more valuable. 

Additionally, the method was not tested with various 

meta-learning algorithms, limiting its robustness. 

Finally, the diarization process often faces considerable 

challenges when only unimodal information is available. 

Audio-based diarization, in particular, is fraught with 

complexities due to overlapping speech from different 

speakers, distortions, low utterances, and reverberations. 

 

 

3. METHODOLOGY 

 

The core intention of this research is speaker segmentation 

and speaker diarization using proposed FEOSA, which is the 

integration of FC [21] and EOSA [22]. Initially, the input 

audio sample taken from Telugu dataset specified in the study 

[23] is allowed for the process of feature extraction. After the 

process of extracting required features, Speech activity 

identifications carried out for clearly identifying the signal 

from non-speech ones. Then, this detected speech is sent for 

Speaker segmentation, where the speech is segmented based 

on Speaker Change Detection [24] and the constant thresholds 

are estimated using Proposed FEOSA. Next to speaker 

segmentation, the clustering or Speaker diarization process is 

conducted using entropy weighting power k means algorithm 

[25], where the weight update is accomplished through same 

proposed FEOSA. Figure 1 portrays the schematic illustration 

of proposed FEOSA. 

 

 
 

Figure 1. Schematic representation of FEOSA for speaker segmentation and speaker diarization 

 

3.1 Acquisition of input audio signal 

 

Assume the database as Z with numerous training audio 

samples and the equation for this considered dataset is 

illustrated as: 

 

 1 2, ,... ,...i jZ A A A A=  (1) 

 

Here, 𝐴𝑖 denotes 𝑖𝑡ℎ audio signal used for processing and j 

shows the overall quantity of audio samples existing in the 

given dataset. 

 

3.2 Feature extraction 

 

It is the mechanism of pointing out the influencing and 

differentiating properties of a signal. A desirable feature 

imitates characteristics of a signal in a dense manner. Here, 

input audio signal 𝐴𝑖 is given to the feature extraction stage 

and following described features are drawn out in such a 

manner compact that facilitates the further processing in a 

smooth way. 

 

3.2.1 MFCC 

The cepstral representation of an audio clip derives MFCCs 

[26] and it illustrates the less span power spectrum of an audio 

clip depending upon the discrete cosine transform of log power 

spectrum on a non-linear Mel-scale. In this, frequency bands 

are equivalently distributed on Mel-scale that imitates the 

manual hearing model approximately, thereby considering 

MFCC as a fundamental feature in different signal processing 

applications. MFCC features are more successful as it includes 

more detailed signal data. For this purpose, MFCC is 

employed for diarization. At first, a signal is converted into 

framed one depending upon frames references. Assume the 

input as 𝐴𝑖  and framed one as 𝐴𝑑(𝑟) in which r denotes the 

total sample number. The power spectrum is evaluated using 

below expression as: 
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( ) ( ) 21
d dB g A g

R
=  (2) 

 

Here, the frame number is indicated as d, 𝐴𝑑(𝑔) implies the 

discrete Fourier transform and whole sample is denoted as R. 

 

( ) ( ) ( ) 2

1
;1

R k ga

d dr
A g A r H r e g G−

−
=    (3) 

 

Here, the framed signal is signified as 𝐴𝑑(𝑟), the whole 

feature and its frequency is depicted as G and H(r), 

respectively. In addition, g implies the 𝑔𝑡ℎ feature. 

Thereafter, frequency is converted into Mel unit and it is 

defined as follows: 

 

1125 1
700

K
Mel lr

 
= + + 

 
 (4) 

 

The Mel unit measures are employed to generate the filter 

bank in which 𝑙 = 1 to L, and L signifies overall number of 

filter d() states the l+2 Mel spaced frequencies. The attained 

pout put of MFCC is notated as 𝑓1. 
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(5) 

 

3.2.2 LPCC 

The cepstrum has number of benefits, such as orthogonality, 

source-filter separation, compactness, and so on. Linear 

Prediction Coefficients (LPC) is highly susceptible to 

mathematical accuracy; thus it is necessary to convert LPC 

into cepstral area and overall output is converted coefficients 

are known as LPCCs. LPCC [16] feature is the efficient feature, 

which is performed to do the vocal tract information of speaker. 

Nevertheless, the significance of LPCC is very low if distorted 

signal is attained. The LPCC feature is expressed as 𝑓2.  
 

3.2.3 LSF 

LSF is refereed as linear spectral couple and is highly 

adopted for speech coding. It is utilized to highlight LPCs for 

transmission over the network. In addition, LSF includes 

improved quantization characteristics than linear prediction 

(LP) problems. This is highly capable to decrease the bitrate 

without degrading standard of signal. The LSF defines to 

predictor coefficient of inverse filter I(g). Initially, I(g) is 

classified into two auxiliary signals, such as Bb(g) and Cc(g). 

The obtained LSF feature is indicated as 𝑓3. 
 

3.2.4 Spectral spread 

It is known as spectral dispersion and this is associated with 

bandwidth of the signal. It’s described as the mean of closest 

spread of spectrum and it is given by: 
 

( )

( )

2

4

c

m

m

m S
X m

f
X m



− 
 
 

=




 (6) 

 

where, X(m) specifies the amplitude of 𝑚𝑡ℎ frequency and 𝑆𝑐 

shows spectral centroid.  

3.2.5 Spectral roll off 

The features defined as the frequency such that 95% of 

energy is spared below this level and it is expressed as: 
 

( ) ( )( )2

1 1
5 0.95

b

m b m b
f X m X m

= =
= =   (7) 

 

where, 𝑏1 and 𝑏2 signifies edges of band. 

 

3.2.6 Logarithmic band power 

This effective feature named logarithmic band power [2] is 

exploited to improve the diarization mechanism and it is given 

by: 

 

( ) 2

6

1

1
log

X

x

f X x
X =

 
=  

 
  (8) 

 

X(x) signifies the discrete signal and size of logarithmic 

band power is 𝑓6. 
 

3.2.7 Spectral skewness 

It is the third order statistical measure and it estimates 

uniformity of spectrum around its arithmetic average. It is 

equivalent to null measure for inaudible parts and would be 

high for audible segments. 
 

( )

( )

3

7

c

m

m

m S
X m

f
X m



− 
 
 

=




 

(9) 

 

where, β signifies the disparity coefficient and the size of this 

feature is [1×1]. 
 

3.2.8 Zero-crossing rate 

Zero-crossing rate is described as the degree of variation of 

signal. Simply, it is defined as amount of signal bounds the 

zero range in one second meantime. The effectual way to 

identify the voice activity is accomplished through zero-

crossing rate feature and it also identifies whether a speech 

frame is unvoiced, audible or inaudible. Generally, zero-

crossing rate is high for voiced segment of the speech. It is 

proved that zero-crossing rate for unvoiced portion is very 

higher than voiced portion. Besides, it is an effectual approach 

to assess the fundamental frequency (FF) of the speech. The 

expression for zero-crossing rate is defined as follows: 
 

( ) ( )8

1

1
1

2

N

n

f Sgn u n Sgn u n
N =

= − −        (10) 

 

where, Sgn(⋅) is a sign function. The obtained zero-crossing 

rate feature is implied as 𝑓8. 
 

3.2.9 FFT 

FFT [27] has been utilized in large-scale applications in the 

signal-processing and evaluation. If there is a large quantity of 

audio signals with constant distribution, audio signal can be 

functioned by considering FFT. The expression for this is 

given as follows: 

 

( )

2
1

9

0

1
ii eOjj

N

D
e

e

f fn O e
N


−

=

=   (11) 
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where, D signifies the total capacity, N is number of signals 

and 𝑂𝑗𝑗 =
𝐷𝑗𝑗

𝑁
 is the space. 

 

3.2.10 Spectral centroid 

It refers the location of center of mass of spectrum. It 

defines contrast of a speech and thus, it is known as brightness 

feature. The spectral centroid feature is signified as 𝑓10. 
 

3.2.11 Power Spectral Density (PSD) 

Power of a signal [28] can be achieved by integrating the 

Power spectral density, which is the square of the absolute 

measure of the FFT coefficients. This function aids to estimate 

the overall power included in individual spectral component 

of certain signal. The expression for feature 𝑓11 is computed 

as: 
 

11

Sl
f

fn −
=  (12) 

 

where, Sl exhibit the spatial length to power and α is the PSD. 

The obtained feature vector is calculated as follows: 
 

 1 2 3 4 11, , , ,...,iF f f f f f=  (13) 

 

3.3 Speech activity detection 
 

After extracting the features finely, speech activity 

identification is performed by taking the feature vector 𝐹𝑖 as 

an input. The major role for conducting this detection process 

is to isolate the noisy from noiseless signals. This detection is 

accomplished via two decoupled stages, such as silent removal 

and music elimination. All of the first, the silence existing in 

the whole audio recording is detached using energy-based 

bootstrapping. Thereafter, music elimination is done to 

eliminate the music contained in the audio background. 
 

3.3.1 Silence removal 

It is accomplished through features, like MFCC, LPCC, and 

LSF and its first and second order derivatives. In this phase, 

confidence values are allocated to each frame by employing 

bootstrap segmentation to both speech and silence classes. 

Here, Gaussian mixtures are employed to train bootstrap 

silence technique and training of such speech model must be 

carried out with equal size. The maximum confidence speech 

and silence frame is utilized to tune the speech signals for 

successive epochs. 
 

3.3.2 Music elimination 

High energy non-speech is referred as audible non-speech 

signal and are identified based on speech and frame energy of 

music is similar to that of speech signals due to MFCC, LPCC, 

and LSF. The speech and music differentiator affected while 

speech and music are accessible at the same time. The 

maximum confidence frames of speech classes and silence are 

exploited for training the first evaluate system. The evaluation 

of silence is conducted to filter out the signal from music 

partitions. The result obtained from speech activity detection 

process is specified as 𝐴𝐷𝑖. 
 

3.4 Speaker segmentation 
 

After detaching the non-speech signal, 𝐴𝐷𝑖  is applied to 

segmentation mechanism to determine the speaker variation. 

If the time period of signal exceeds five seconds, then process 

of speaker segmentation should be conducted to identify the 

speaker change. For this purpose, two neighboring windows  

𝐽1 and 𝐽2 are considered and the time of this window varies 

from 1s to 10ms. At first, distance between two windows is 

identified and it is shown as follows: 

 

( )
( )

( ) ( )
1 2, log

z z

w w y y

M
Dis J J

M M



 


= −

 
 (14) 

 

where, 𝑀𝑤 , 𝑀𝑦 , and 𝑀𝑧 be the feature vectors of 𝐽1 and 𝐽2. In 

addition, the statistical model of 𝑀𝑤 , 𝑀𝑦 , and 𝑀𝑧  be 𝜃𝑤 , 𝜃𝑦, 

and 𝜃𝑧 , respectively. Once the distance is found, speaker 

change is determined by fulfilling the local maximum distance 

case and it is represented as follows: 

 
left

high leastDis Dis −   (15) 

 
right

high leastDis Dis −   (16) 

 

( )left

high least right
Min U U −   (17) 

 

Here, the local height distance is specified as 𝐷𝑖𝑠ℎ𝑖𝑔ℎ . 

Likewise, 𝐷𝑖𝑠𝑙𝑒𝑎𝑠𝑡
𝑙𝑒𝑓𝑡

 and 𝐷𝑖𝑠𝑙𝑒𝑎𝑠𝑡
𝑟𝑖𝑔ℎ𝑡

 specifies the measure of both 

left and right local least distance and the local low index is 

denoted as 𝑈ℎ𝑖𝑔ℎ. The Eqs. (15)-(17) not only chooses the local 

high value but the shape is also taken into an account. The 

constant thresholds are stated as μ and λ in which μ signifies 

the variance of distance measures and that is constant as 0.5 

and λ is assumed to be 5. Hence, the segmented output is 

represented as 𝑉𝑖  and the constant thresholds are computed 

optimally using proposed FEOSA. 

 

3.4.1 Optimization of constant thresholds using proposed 

FEOSA 

The constant thresholds in the speaker segmentation process 

are efficiently estimated using proposed FEOSA, which is 

derived by the consolidation of FC [12] concept into EOSA 

[13]. Ebola is also referred as Ebola virus and it is a viral fever 

usually known for humans and other organisms caused by 

Ebola viruses. This metaheuristic algorithm EOSA is inspired 

by the propagation process of Ebola virus highlighting all 

steady conditions of the propagation. On the other hand, FC is 

used by the Bacterial Foraging Optimization (BFO) at its 

chemotaxis step and this concept is mostly employed to 

elevate the computational performance. By amalgamating 

these two concepts can deliver better speaker diarization 

performance with enhanced accuracy. 

(1) Ebola search position encoding 

The encoding represents the diagrammatic illustration of 

finest resolution depending upon the designed FEOSA and this 

algorithm is employed to estimate the constant thresholds 

𝜇 and 𝜆 for speaker segmentation. The illustration of solution 

encoding is portrayed in Figure 2. 

 

 
 

Figure 2. Solution encoding 
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(2) Objective factor 

To evaluate the finest solution depending upon Mean 

Squared Error (MSE), objective factor is employed. Moreover, 

objective solution with minimum possible MSE value is 

declared as the finest solution and it is computed based on 

below expression: 

 

( ) 2

1

1 j

i i i

i

T V
j =

 = −  (18) 

 

where, 𝑇𝑖  denotes the timespan of actual speaker change and 

the timespan of determined speaker change is symbolized as 

𝑉𝑖 . Here, j implies number of audio signals considered for 

experimentation. The algorithmic procedures are delineated 

beneath. 

Step 1: Initialize susceptible population 

Let us initialize the population of a susceptible candidates 

randomly in a distributed space with zero initial position, such 

that 𝑛𝑡ℎ  individual is created as presented in Eq. (19). The 

function rand(0,1) creates evenly distributed values, 𝑈𝐵𝑛 and 

𝐿𝐵𝑛 shows the higher and lower bounds, respectively for 𝑛𝑡ℎ 

individual that exists in the limit of 1,2,3,...,Nn. 

 

 1 2, ,..., ,...,n hE E E E E=  (19) 

 

( ) ( )0,1n n n nE LB rand UB LB= +  +  (20) 

 

The choosing criteria of the latest best solution is done 

based on the group of infected persons in time t. However, the 

preference of the global best is according to the below 

expression: 

 

( )

( )

( )

( )

,

,

GgBest fitness HhBest

fitness GgBest
bestE

HhBest fitness HhBest

fitness GgBest





= 



 (21) 

 

Here, bestE, GgBest, and HhBest are respectively implies 

the best, global best, and present best solution at instant t. The 

GgBest and HhBest is simply referred as super spreader and 

spreader of Ebola virus. 

Step 2: Estimate the objective function 

The objective factor is employed to evaluate finest solution 

that is minimum MSE and it is formulate discording to Eq. 

(18). 

Step 3: Upgrade the position 

When the number of iterations is drained out and there 

remains at least an infected person, then the following 

condition will be taken place. For each affected person, create 

and update its location depending upon their displacement. It 

is noted that if an affected person is replaced, high the amount 

of infections, such that the displacement defines exploitation 

or else exploration would be conducted. The update location 

of each susceptible individual is computed as, 

 

( )1 1t t

n nq In q In Q In+ += +  (22) 

 

Here, the scalar parameter for displacement is implied as ρ, 

the upgraded and actual location at instant t and t+1 is stated 

as 𝑞𝐼𝑛𝑛
𝑡+1  and 𝑞𝐼𝑛𝑛

𝑡 . Besides Q(In) denotes the movement 

measure generated by individuals and it is described as, 

 

( ) ( ) ( )0,1 bestQ In prate rand Q E=  +  (23) 

 

By substituting Eq. (20) in Eq. (19), expression becomes, 

 

( ) ( )1 1 0,1t t

n n bestqIn qIn prate rand Q E + += +   +   (24) 

 

To apply FC concept, substract 𝑞𝐼𝑛𝑛
𝑡  on both sides and the 

equation is expressed as, 

 

( )

( )

1 1 0,1t t tqIn qIn qIn prate randn n n

tQ E qInnbest





+ +− = +  

+  −

 (25) 

 

( )

( )

1 1 0,1t t tqIn qIn qIn prate randn n n

tQ E qInnbest





+ +− = +  

+  −
 (26) 

 

( )

( )( )

( ) ( )

1 1 2

3 1

1 1
1

2 6

1
1 2

24

0,1

t t t t

n n n n

t t

n n

t

best n

QIn QIn In QIn

QIn qIn

prate rand Q E qIn 

+ − −

− +

− − − −

− − − =

+   +  −

 (27) 

 

The update solution becomes, 

 

( )

( ) ( )( )

( ) ( )

11 11
2

1 12 31 1 2
6 24

0,1

t t tQIn QIn QInn n n

t tQIn QInn n

prate rand Q E
best



+ −= + +

− −+ − + − −

+   +

 (28) 

 

The exploitation phase of FEOSA considers that the 

affected people either stay away within a distance of zero or is 

relocated within a range not exhausting prate expressing short 

distance movement. The exploration stage of this algorithm 

considers that the affected person has sweep away from the 

neighborhood limit state. The neighborhood parameter 

controls both the prate and state. 

Step 4: Compute the number of individuals 

The solution is updated according to an ordinary differential 

expression and the consideration of differential calculus aims 

to achieve the change in rate of quantities Su, In, Ho, Re, Va, 

De and Qu in terms of time period t and the expression is given 

by: 

 

( ) ( )( )

( )

1 3 4 2ReIn De PESu t

t Su Su In

    


 + + +
 = −
  −  + 

 (29) 

 

( )
( )( )

( ) ( )

Re
1 3 4 2

In t
In De PE Q

t

Su In Su

   




= + + +



−  + − 

 (30) 

 

( )
( )

Ho t
In Ho

t
  


= − +


 (31) 

 

( )Re
Re

t
In

t



= −


 (32) 
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( )
( )

va t
In Va

t
  


= − +


 (33) 

 

( )
( )

De t
Su In De

t



=  + −


 (34) 

 

 

( )
( )( )Re

Qu t
In De Qu

t
  


= − + −


 (35) 

 

It is assumed that the Eqs. (29)-(34) is a scalar function 

representing that it has one number as a measure and can be 

expressed as an original value. Moreover, Eq. (35) states the 

amount of quarantine of affected patients of Ebola. 

Step 5: Termination 

 

Algorithm 1. Pseudo code of FEOSA 

 

SL. No Pseudo code of proposed FEOSA 

1 Input: 𝑄𝐼𝑛𝑛
𝑡 , ρ size, LB, UB, epoch, fitness 

function 

2 Output: 𝑄𝐼𝑛𝑛
𝑡+1, GgBest 

3 Initialize the population set 𝐸 =
{𝐸1, 𝐸2, . . , 𝐸𝑛 , . . . , 𝐸ℎ} 

4 Su←generate susceptible individual (ρsize, 

Su) using Eq. (19) 

5 time←0; 

6 ncase←generated Index case (); 

7 Ggbest, Hhbest←ncase, 

8 While Ee≤epoch∧len(In)>0do 

9 Qu←rand(0,Eq.35×In); 

10 fracIn=In-Qu; 

11 For n←1tolen(fracIn)do 

12 𝑃𝑜𝑠𝑛 ← 𝑚𝑜𝑣𝑟𝑎𝑡𝑒 ( )using Eq. (22) 

13 𝐷𝑑𝑛 ← 𝑟𝑎𝑛𝑑( );  

14 If 𝐷𝑑𝑛 > 𝑒𝑣𝑒𝑑𝑖𝑛𝑐𝑢𝑏 then 

15 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 ← 𝑃𝑟 𝑜 𝑏(𝑃𝑜𝑠𝑛);  

16 If neighborhood<0.5 then 

17 𝑡𝑒𝑚𝑝 ← 𝑟𝑎𝑛𝑑(0, 𝐸𝑞. (30) × 𝐼𝑛 × 𝑝𝑟𝑎𝑡𝑒)  

18 End 

19 Else 

20 𝑡𝑒𝑚𝑝 ← 𝑟𝑎𝑛𝑑(0, 𝐸𝑞. (30) × 𝐼𝑛 × 𝑠𝑟𝑎𝑡𝑒)  

21 End 

22 𝑛𝑒𝑤𝐼𝑛
+ ← 𝑡𝑒𝑚𝑝;  

23 End 

24 𝐼𝑛
+ ← 𝑛𝑒𝑤𝐼𝑛;  

25 End 

26 Calculate Eq. (31) to Eq. (34) 

27 𝐼𝑛
+ ← 𝐼𝑛 − 𝑎𝑑𝑑(𝑅𝑒, 𝐷𝑒)  

28 𝑆𝑢+ ← 𝑅𝑒;  

29 𝑆𝑢− ← 𝐷𝑒;  

30 𝐻ℎ𝑏𝑒𝑠𝑡 = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑜𝑏𝑗𝑓𝑛, 𝐼𝑛);  

31 If Hhbest>Ggbest then 

32 Ggbest=Hhbest; 

33 Bestso ln←Ggbest; 

34 End 

35 End 

36 Return Ggbest, Bestso ln 

37 Terminate 

The procedure is iterated over and over until it obtains the 

finest solution. Algorithm 1 signifies the pseudo code of 

proposed FEOSA. 

 

3.5 Speaker diarization 

 

Speaker diarization is the mechanism of clustering the 

speech portions according to the speaker and it is usually 

described as “who is speaking when”. Here, the segmented 

speech signal 𝑉𝑖 is clustered by employing entropy weighted 

power k-means clustering and weights are upgraded utilizing 

FEOSA. 

 

3.5.1 Entropy weighted power k-means algorithm for 

clustering 

Clustering is the basic task in unsupervised learning for 

dividing the data into groups depending upon certain similarity 

measure. Among the clustering algorithms, K-means 

algorithm is the popular approaches for data clustering and 

power k-means is mainly designed to eliminate minimum local 

minima slowly by means of a well surface. Let us consider 

𝑌1, . . . . , 𝑌𝑣 ∈ ℜ
𝑚𝑚

implies the v data points and 𝜓𝑛𝑛×𝑚𝑚 =
[𝜓1, . . . . , 𝜓𝑛𝑛]𝛵 specify the matrix, in which rows consist of 

the cluster centroids. The feature relevance vector is denoted 

as 𝑊 ∈ ℜ
𝑚𝑚

 in which 𝑊𝐿𝑙 represents the weight of the Ll-th 

feature and it is very important to fulfil the constraints by 

applying these weights. Algorithm 2 represents the pseudo 

code of entropy weighted power k-means algorithm. 
 

1

1; 0 1,....,
mm

Ll Ll

Ll

W W for all Ll mm
=

=  =  (36) 

 

The entropy weighted power aim for τ is expressed as 

follows: 
 

( )
( )2 2

, ....,1
,

1 log
1

PM Y Y nnW Wv
E W mm

ii W W
Ll LlLl

 




− −

= 
= + 

=

 (37) 

 

The last term is the negative entropy of W and is decreased 

when 𝑊𝐿𝑙 =
1

𝑚𝑚
 for all Ll=1,....,mm. The value of constants is 

defined by: 

 

( )

( )2 1

,

1
1

2

,1

1

1

Uu

Uu

ii Uu jj W
Uu

iijj

nn

ii Uu jj Wjj

Y
nn

Y
nn



 






−

 
− 

 

=

−

=
 

− 
 



 (38) 

 

The closed form solutions are given by: 

 
( )

( )

1
1,

1

v Uu

iijj iiii
Uu jj v Uu

iijjii

Y




=
+

=

=



 (39) 

 

( ) ( )

( ) ( )

2

1 1

1, 2

1 1

1
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v nn Uu

iijj iiLl jjLlii jj

Uu Ll v nn Uu
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Y

W
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= =

+

= =
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 − 
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=
 − 
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3.5.2 Weight updating using proposed FEOSA 

The weights in the entropy weighted power k-means are 

updated using same proposed FEOSA and its algorithmic 

procedure is already described in section 3.4.1. By integrating 

the FC concept into the EOSA can provide better convergence 

speed with improved accuracy in terms of speech diarization 

mechanism. The result achieved through this speaker 

diarization step is denoted as 𝑆𝐷𝑖 . 

 

Algorithm 2. Pseudo code of Entropy weighted power k-

means 

 

SL. 

No 

Pseudo code of Entropy weighted power k-

means  

1 Input: 𝑌 ∈ ℜ
𝑣×𝑚𝑚, 𝜏 > 0, ℓ > 1 

2 Output: ψ 

3 Begin 

4 Initialize 𝜅𝑜 < 0 and 𝜓0 

5 Repeat 

6 Determine constant 

𝜙𝑖𝑖𝑗𝑗
(𝑈𝑢)

←
1

𝑛𝑛
‖𝑌𝑖𝑖 − 𝜓𝑈𝑢,𝑗𝑗‖

𝑊𝑈𝑢

2(𝜅𝑈𝑢−1)
(

1

𝑛𝑛
∑ ‖𝑌𝑖𝑖

𝑛𝑛

𝑗𝑗=1

− 𝜓𝑈𝑢,𝑗𝑗‖
𝑊𝑈𝑢

2𝜅𝑈𝑢
)

(
1

𝜅𝑈𝑢
−1)

 

7 

𝜓𝑈𝑢+1,𝑗𝑗 ←
∑ 𝜙𝑖𝑖𝑗𝑗

(𝑈𝑢)
𝑌𝑖𝑖

𝑣
𝑖𝑖=1

∑ 𝜙𝑖𝑖𝑗𝑗
(𝑈𝑢)𝑣

𝑖𝑖=1

 

8 𝑊𝑈𝑢+1,𝐿𝑙

←

𝑒𝑥𝑝 {−
∑ ∑ 𝜙𝑖𝑖𝑗𝑗

(𝑈𝑢)
(𝑌𝑖𝑖𝐿𝑙 − 𝜙𝑗𝑗𝐿𝑙)

2𝑛𝑛
𝑗𝑗=1

𝑣
𝑖𝑖=1

𝜅
}

∑ 𝑒𝑥𝑝 {−
∑ ∑ 𝜙𝑖𝑖𝑗𝑗

(𝑈𝑢)𝑛𝑛
𝑗𝑗=1

𝑣
𝑖𝑖=1 (𝑌𝑖𝑖𝐿𝑙 − 𝜙𝑗𝑗𝐿𝑙)

2

𝜅
}𝑚𝑚

𝑇𝑡=1

 

9 𝜅𝑈𝑢+1 ← ℓ𝜅𝑈𝑢  

10 Terminate 

 

 

4. RESULTS AND DISCUSSION 

 

The FEOSA results are enumerated clearly in this part and 

performance is also analyzed with various conventional 

methodologies to expose the efficacy of the model. 

 

4.1 Experimental setup 

 

The demonstration of this FEOSA is carried out in 

MATLAB tool employing PC exhibiting 4 GB RAM, 10 OS 

with intel core-i3 processor. 

 

4.2 Dataset illustration 

 
The demonstration is carried out utilizing Eenadu 

Prathidwani dataset specified in the study [26]. This dataset is 

comprised with massive files of people feelings and issues 

dealt with economic, political and cultural perspectives. The 

considered data is classified into two test conditions in which 

the initial condition has 3 speakers, while the second condition 

has 6 speakers. 

 

4.3 Experimental outcomes 

 

Figure 3 implies outcomes of FEOSA. Figure 3 a) and 3 c) 

implies input of 3 speakers and 6 speakers respectively. The 3 

speaker MFCC feature a 6 speaker MFCC feature are 

respectively revealed in Figure 3 b) and 3 d). 

 

4.4 Evaluation measures 

 

The evaluation metric employed for assessment of FEOSA 

are testing accuracy, diarization error, False Discovery Rate 

(FDR), False Negative Rate (FNR), and False Positive Rate 

(FPR). 

 

4.4.1 Testing accuracy 

It states then earest possible degree of an estimates value 

with respect to original value in speaker diarization. 

 
p n

p n p n

AB AC
Testing acc

AB AB AC AC

+
=

+ + +
 (41) 

 

𝐴𝐵𝑝  implies true positive, 𝐴𝐵𝑛  shows true negative, 𝐴𝐶𝑝 

depicts false positive, and 𝐴𝐶𝑛 refers false negative. 

 

4.4.2 Diarization error 

It defines proportion of time, which is not imputed 

accurately to a speaker and is computed as, 

 
( ).(max( ( ),

1 ( )) ( ))

( ).
1

dur ab Cout ab
ref

ab Count ab Count abcorrecthyp
DER

dur ab Count
ab ref


 = −

=


 =

 (42) 

 

where, N is overall count of segments, 𝐶𝑜𝑢𝑛𝑡𝑟𝑒𝑓(𝑎𝑏) is count 

of speaker speaking in segment ab and 𝐶𝑜𝑢𝑛𝑡𝑐𝑜𝑟𝑟𝑒𝑐𝑡(𝑎𝑏) 

refers total speakers who talk in segment ab and is accurately 

matched among reference and hypothesis. 

 

4.4.3 FDR 

It is defined as the obtaining of positive result when it is 

truly not an accurate output and is described as, 

 
NF

FDR =


 (43) 

 

where, NF shows count of false findings and Y signifies 

overall findings. 

 

4.4.4 FNR 

It is the probability of falsely eliminating void hypothesis 

for particular evaluation and is expressed as, 

 
n

n p

AC
FPR

AC AB
=

+
 (44) 

 

4.4.5 FPR 

It defines accurately eliminated samples amongst over all 

count and it is termed as,  

 
p

p n

AC
FPR

AC AB
=

+
 (45) 
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(a) (b) 

  
(c) (d) 

 

Figure 3. Experimental outcomes, a) 3 speaker input, b) 3 speaker MFCC feature, c) 6 speaker input, d) 6 speaker MFCC feature 

 

4.5 Competing models 
 

The methods employed for comparison of proposed FEOSA 

are active learning [1], DE+K-means [2], LSTM [3], MCGAN 

[4], ANN-ABC-LA, ACWOA+DFC, and FrACWOA+DEC. 

 

4.6 Comparative estimation 

 

This part deliberates the estimation of FEOSA for two cases 

in terms of evaluation measures by varying training data and 

K-fold. 

 

4.6.1 Assessment based on testcase-1 by varying training data 

In Figure 4 a), evaluation of proposed FEOSA with respect 

to testing accuracy is displayed. If training data=90%, 

accuracy gained by designed scheme is 0.913 that delivers 

performance enhancement of devised approach to that of 

existing models, is 15.218%, 13.395%, 12.817%, 11.640%, 

9.801%, 6.511%, and 4.987%. Figure 4 b) represents the 

analysis of diarization error. The FEOSA achieved diarization 

error as 0.566, whereas the classical schemes delivered the 

diarization error as 0.768for active learning, 0.725 for DE + 

K-means, 0.743 for LSTM, 0.730 for MCGAN, 0.629 for 

ANN-ABC-LA, 0.592 for ACWOA+DFC, and 0.568 for 

FrACWOA+DEC for data=90%. Figure 4 c) reveals the 

assessment of modeled approach in respect to FDR. For 

training percentage=90%, FDR attained by proposed FEOSA 

is 0.257 and the FNR obtained by FEOSA is 0.128 as shown 

in Figure 4 d). Figure 4 e) displays the evaluation of FPR. 

While increasing 90%, FPR attained by developed approach is 

0.104, while conventional schemes obtained the FPR of 0.262, 

0.236, 0.217, 0.219, 0.209, 0.124, and 0.105, respectively C. 

 

4.6.2 Assessment based on test case-1 by varying K-fold  

Figure 5 a) implies the estimation of designed FEOSA in 

respect to testing accuracy by changing K-fold value. If K-fold 

is 9, accuracy yielded by devised approach is 0.924. The 

existing techniques gained K-fold value as 0.804 for active 

learning, 0.822 for DE + K-means, 0.827 for LSTM, 0.838 for 

MCGAN, 0.856 for ANN-ABC-LA, 0.887 for ACWOA+DFC, 

and 0.902 for FrACWOA+DEC. If the K-fold measure is 9, 

diarization error attained by FEOSA is 0.598 depicted in 

Figure 5 b). Figure 5 c) implies the estimation of developed 

FEOSA in regard to FDR. If K-fold value as 9, FDR revealed 

by modeled strategy is 0.265. Figure 5 d) and 5 e) signifies the 

estimation of designed scheme in accordance with FNR and 

FPR. ForK-fold value=9, FNR gained by proposed approach 

is 0.131, while the proposed FEOSA delivered FPR as 0.106. 
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4.6.3 Assessment based on testcase-2 by varying training data 

Figure 6 a) reveals estimation of proposed FEOSA in 

accordance to testing accuracy. For training data=90%, 

accuracy gained by developed model is 0.880 that outcomes 

the evolvement of proposed approach to that of existing 

models is 19.719%, 16.741%, 13.492%, 10.304%, s 9.220%, 

3.778%, and 1.426%. Figure 6 b) depicts the evaluation of 

diarization error. The FEOSA achieved diarization error as 

0.628, whereas the classical techniques provided the 

diarization error as 0.801 for active learning, 0.757 for DE + 

K-means, 0.776 for LSTM, 0.762 for MCGAN, 0.656 for 

ANN-ABC-LA, 0.618 for ACWOA+DFC, and 0.630 for 

FrACWOA+DEC for data=90%. Figure 6 c) reveals the 

estimation of modeled scheme in relation to FDR. For training 

data=90%, FDR attained by proposed FEOSA is 0.266 and the 

FNR obtained by proposed model is 0.114 as displayed in 

Figure 6 d). Figure 6 e) portrays the assessment of FPR. While 

taking the data as 90%, FPR attained by modeled approach is 

0.114, while conventional schemes showed the FPR of 0.270, 

0.226, 0.199, 0.172, 0.163, 0.117, and 0.115. 

 

4.6.4 Estimation based on test case-2 by varying K-fold value 

Figure 7 a) specifies the estimation of FEOSA with respect 

to testing accuracy by changing K-fold value. If K-fold 

measure is 9, accuracy yielded by developed work is 0.922. 

However, existing techniques gained the K-fold value as 0.785 

for active learning, 0.809 for DE + K-means, 0.815 for LSTM, 

0.835 for MCGAN, 0.863 for ANN-ABC-LA, 0.884 for 

ACWOA+DFC, and 0.903 for FrACWOA+DEC. For K-fold 

value is 9, diarization error attained by FEOSA is 0.626 

illustrated in Figure 7 b). Figure 7 c) implies the estimation of 

developed FEOSA in terms of FDR. While considering the K-

fold value as 9, FDR gained by designed strategy is 0.275, 

while the classical models attained the FDR value as 0.324 for 

active learning, 0.322 for DE + K-means, 0.295 for LSTM, 

0.295 for MCGAN, 0.293 for ANN-ABC-LA, 0.287 for 

ACWOA+DFC, and 0.276 for FrACWOA+DEC. Figures 7 d) 

and 7 e) signifies the estimation of FEOSA model in terms of 

FNR and FPR. ForK-fold value=9, FNR gained by proposed 

approach is 0.116. On the other hand, FEOSA gained FPR as 

0.116. 

 

Table 1. Comparative discussion 

 

Test Cases Metrics/Methods 
Active 

Learning 

DE+K-

Means 
LSTM MCGAN 

ANN-ABC-

LA 
ACWOA+DFC FrACWOA+DEC 

Proposed 

FEOSA 

Test case-1 

Training 

data=90% 

Testing accuracy 0.774 0.791 0.796 0.807 0.824 0.854 0.868 0.913 

Diarization error 0.768 0.725 0.743 0.730 0.629 0.592 0.568 0.566 

FDR 0.312 0.310 0.285 0.284 0.282 0.276 0.258 0.257 

FNR 0.270 0.245 0.200 0.230 0.217 0.141 0.129 0.128 

FPR 0.262 0.236 0.217 0.219 0.209 0.124 0.105 0.104 

Test case-1 

K-fold value=9 

Testing accuracy 0.804 0.822 0.827 0.838 0.856 0.887 0.902 0.924 

Diarization error 0.798 0.753 0.772 0.758 0.653 0.615 0.600 0.598 

FDR 0.323 0.321 0.294 0.294 0.292 0.286 0.267 0.265 

FNR 0.279 0.253 0.206 0.237 0.224 0.145 0.132 0.131 

FPR 0.271 0.244 0.224 0.226 0.216 0.127 0.107 0.106 

Test case-2 

Training 

data=90% 

Testing accuracy 0.788 0.811 0.817 0.837 0.866 0.886 0.905 0.922 

Diarization error 0.801 0.757 0.776 0.762 0.656 0.618 0.630 0.628 

FDR 0.314 0.311 0.286 0.285 0.284 0.278 0.267 0.266 

FNR 0.263 0.227 0.200 0.173 0.164 0.118 0.115 0.114 

FPR 0.270 0.226 0.199 0.172 0.163 0.117 0.115 0.114 

Test case-2 

K-fold value=9 

Testing accuracy 0.785 0.809 0.815 0.835 0.863 0.884 0.903 0.922 

Diarization error 0.799 0.755 0.773 0.759 0.654 0.616 0.628 0.626 

FDR 0.324 0.322 0.295 0.295 0.293 0.287 0.276 0.275 

FNR 0.272 0.235 0.206 0.178 0.168 0.121 0.118 0.116 

FPR 0.279 0.233 0.205 0.177 0.167 0.119 0.118 0.116 

 

  
(a) (b) 
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(c) (d) 

 
(e) 

 

Figure 4. Estimation based on testcase-1 with training data, a) Testing accuracy, b) Diarization error, c) FDR, d) FNR, e) FPR 
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Figure 5. Evaluation based on testcase-1 with K-fold value, a) Testing accuracy, b) Diarization error, c) FDR, d) FNR, e) FPR 
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(e) 

 

Figure 6. Estimation based on testcase-2 with training data, a) Testing accuracy, b) Diarization error, c) FDR, d) FNR, e) FPR 
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(c) (d) 

 
(e) 

 

Figure 7. Evaluation based on testcase-1 with K-fold value, a) Testing accuracy, b) Diarization error, c) FDR, d) FNR, e) FPR 

 

4.7 Comparative discussion 

 

Table 1 shows the discussion of FEOSA. Accordig to the 

discussion conducted, it is comprehensible that FEOSA has 

resulted superior performance with excellent results in term 

sof accuracy while segmenting the speech and performing the 

speech diarization task. It is declared that FEOSA has 

provided high testing accuracy of 0.913, minimum diarization 

error of 0.566, FDR of 0.257, FNR of 0.128, and FPR of 0.104 

for test case-1 while considering training data as 90%. 

 

 

5. CONCLUSION 

 

Most of the speaker diarization investigation has 

concentrated on unsupervised cases, where no manual 

supervision is existing. Nevertheless, the huge challenge exists 

on minimizing the manual supervision to improve the system 

performance.  

This research provides a solution to speaker segmentation 

and diarization using proposed FEOSA, which is a 

combination of FC and EOSA. The gist of this article is to 

model an effective pipeline for speaker segmentation and 

diarization using designed FEOSA. Here, the features like 

MFCC, LPCC, LSF, spectral roll off, logarithmic band power, 

spectral skewness, zero-crossing rate, FFT, spectral centroid 

and power spectral density are refined by taking the audio 

signal as an input.  

The, speech activity identification is done to extract the 

speech signal from non-speech signals, such as noises, 

background music and so on. The next step is the speaker 

segmentation phase, which is accomplished based on speaker 

change identification and constant thresholds are computed 

based on proposed FEOSA.  

At last, speaker diarization is conducted using entropy 

weighted power k-means and the weights are upgraded 

utilizing FEOSA. The proposed FEOSA has attained 

maximum testing accuracy of 0.913, minimum diarization 

error of 0.566, FDR of 0.257, FNR of 0.128, and FPR of 0.104 

for test case-1 while considering the training data as 90%. 
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Despite the growth in high-quality speaker diarization 

algorithms, there are still many issues that should be rectified 

immediately, such as overlapping speech or speakers voice 

modulations and this topic would be regarded as a potential 

future investigation area. 
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