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The role of machine learning in medical research, particularly in addressing the COVID-19 

pandemic, has proven to be significant. The current study delineates the design and 

refinement of an artificial intelligence (AI) framework tailored to differentiate COVID-19 

from Pneumonia utilizing X-ray scans in synergy with textual clinical data. The focal point 

of this research is the amalgamation of diverse neural networks and the exploration of the 

impact of metaheuristic algorithms on optimizing these networks' weights. The proposed 

framework uniquely incorporates a lung segmentation process using a pre-trained ResNet34 

model, generating a mask for each lung to mitigate the influence of potential extraneous 

features. The dataset comprised 579 segmented X-ray images (Anteroposterior and 

Posteroanterior views) of COVID-19 and Pneumonia patients, supplemented with each 

patient's textual medical data, including age and gender. An enhancement in accuracy from 

94.32% to 97.85% was observed with the implementation of weight optimization in the 

proposed framework. The efficacy of the model in detecting COVID-19 was further 

ascertained through a comprehensive comparison with various architectures cited in the 

existing literature. 
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1. INTRODUCTION

In the early years of the 21st century, the World Health 

Organization (WHO) identified Severe Acute Respiratory 

Syndrome (SARS), a highly transmissible and severe virus, 

marking a pivotal moment in global health [1]. Nearly two 

decades later, a novel virus known as SARS-COV-2 or 

COVID-19 was discovered in Wuhan, China, sharing 80% of 

its genome with SARS. This new virus has since caused over 

160 million confirmed cases and more than 4.8 million deaths 

by October 2021 [2]. Characterized by its droplet-based 

transmission and high mutation rate, COVID-19, declared as a 

pandemic by the WHO on March 11, 2020, has severely 

challenged global health infrastructures due to a lack of 

appropriate testing kits and increased pressure on intensive 

care units. 

The reverse transcription-polymerase chain reaction (RT-

PCR) test has been recognized as the standard method for 

detecting COVID-19 [3]. However, circumstances where RT-

PCR tests are not viable have been observed, including cases 

where patients are physically unable to undergo such a test, 

such as those diagnosed with throat cancer [4]. The insufficient 

distribution and training for test kits in rural communities 

further exacerbates the challenges in containing the viral 

infection. Furthermore, the limitations of RT-PCR have been 

exposed by research indicating its inability to detect long-term 

effects of COVID-19 - a phenomenon highlighted in the work 

of Mallett et al. [5]. The need for alternative diagnostic 

methods, such as medical image analysis using X-ray scans, 

has thus become evident. 

The last decade has witnessed significant advancements in 

Artificial Intelligence (AI), with its applications spanning 

various fields and often outperforming traditional computing 

systems [6]. In particular, the potential of AI in medical image 

analysis has been realized, enabling automation of tasks 

previously exclusive to specialists [7]. Motivated by these 

developments, research efforts have shifted toward public 

health, especially since 2020. Numerous researchers have 

begun leveraging non-invasive methods like X-ray scans to 

detect COVID-19 and associated post-infection symptoms [8]. 

Deep learning (DL) algorithms, such as convolutional 

neural networks (CNNs) and multilayer perceptrons (MLPs), 

have demonstrated their impressive capabilities in computer 

vision tasks related to medical image analysis [9]. While CNNs 

excel at pattern and feature extraction, MLPs process textual 

clinical features, enabling more comprehensive decision-

making. However, the importance of accuracy in these tasks 

often results in overlooking the incorporation of medical 

information during training, such as age and gender, which 

could potentially enhance classification results. 

Training techniques for DL networks like gradient descent 

(GD) and backpropagation (BP) often face challenges that can 

hinder model accuracy [10]. These limitations can potentially 

be mitigated by employing metaheuristics optimization 

methods [11]. The use of such techniques can help navigate 

around local optima and improve performance. Moreover, the 

use of multiple layers can introduce a vanishing or exploding 

gradient problem during backpropagation, complicating the 

attainment of reliable training results. 

Image segmentation plays a critical role in medical image 

data analysis by isolating relevant regions and extracting 

informative features [12]. Precise segmentation of X-ray 

Traitement du Signal 
Vol. 40, No. 4, August, 2023, pp. 1491-1500 

Journal homepage: http://iieta.org/journals/ts 

1491

https://orcid.org/0000-0002-8444-1094
https://orcid.org/0000-0002-7201-3578
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.400417&domain=pdf


 

images can aid in identifying and localizing anatomical 

structures and abnormalities, eliminating non-essential 

information that could potentially influence the model's 

detection rate. 

The primary objective of this study is to design and validate 

a novel weight-optimized Deep Learning model, leveraging 

CNN-MLP networks and integrating several image 

augmentation techniques such as image segmentation and 

histogram equalization for superior classification. The 

proposed framework utilizes medical images and textual 

clinical data as inputs to differentiate between COVID-19 and 

pneumonia in affected individuals. 

 

 

2. RELATED WORK 

 

Chest X-ray scans are utilized by many researchers, for in-

stance, Apostolopoulos and Mpesiana utilized pre-trained 

CNN models to classify COVID-19 from X-ray images [13]; 

and due to the small dataset of 224 COVID-19 positive 

samples, the authors employed transfer learning. Wang et al. 

[14] proposed a deep learning model based on the design 

pattern of PEPX. The model was first pre-trained on the 

ImageNet dataset, and then the COVIDX dataset was used to 

retrain their model. Also, image augmentation was utilized. 

The authors reported an accuracy of 92.4% with 80% 

sensitivity for the COVID-19 class. Apart from this, 

Mukherjee et al. [15] concluded that a single CNN architecture 

could be trained on X-ray and CT scans. In their report, the 

proposed tailored, simple architecture achieved an accuracy of 

96.28% on a dataset that has balanced classes (number of 

samples) of 672 samples for X-ray and CT scans. 

Several studies that utilized machine learning (ML) 

algorithms using numerical/categorical data highlighted the 

importance of merging different data types in detecting 

COVID-19 in chest X-ray and CT images. For instance, 

Lassau et al. [16] used a deep learning-based CT scan model 

with textual clinical information. In their report, the authors 

found 12 variables that are significantly associated with 

severity such as age, gender, and oxygen saturation, 

highlighting the importance of combining several data types to 

achieve a lower misclassification rate. Likewise, the authors 

[17] proposed a multi-modal with the late fusion of textual 

clinical data to classify and assess the severity of COVID-19 

infection. 

Typically, network weights are trained using a variant of 

Gradient Descent (GD). The drawback with gradient descent 

is that the weight update at a given time (t) is determined solely 

by the learning rate and gradient at that time. It does not 

consider the previous actions performed when navigating the 

search space [18], in their pursuit of achieving global optima. 

A solution to this inherited drawback is performing significant 

update steps or using other searching methods such as 

Metaheuristics. 

Metaheuristics algorithms can guide the search for near-

optimal solutions, by efficiently exploring the search space 

without searching every possible solution. Classical 

Metaheuristics algorithms, such as Genetic Algorithms [19], 

Simulated Annealing [20], have shown their suitability to 

solve complex scheduling problems, space allocation 

problems, and learning problems. 

Metaheuristic algorithms are less prone to get trapped in 

local optima. The use of such algorithms can be beneficial in 

training and optimization problems. For instance, Particle 

Swarm Optimization was used to optimize the weights and 

architecture of the MLP network proposed in study [21]. The 

authors proposed the use of two separate PSOs (PSO and PSO 

with weight decay). The first PSO is used to search the number 

of units in a hidden layer, while the PSO with weight decay is 

responsible for optimizing the weights. Furthermore, the 

authors [22] applied an enhanced version of the black hole 

algorithm [23] to search for optimal weights and biases, this 

method achieved a better result than other MHAs that have 

been tested by the authors. Several research papers employed 

metaheuristics in training the network, in the study [24], used 

simulated annealing, which is a metaheuristic algorithm, for 

improving the network performance, after training, and fed to 

the optimization algorithm, the optimized weights are then 

returned to the network. 

 

 

3. MATERIALS AND METHODS 

 

3.1 Datasets 

 

Table 1. The number of samples per class 

 
Class Number of Images Age (Years) 

COVID-19 257 53.29±15.23 

Pneumonia 322 41.73±21.66 

 

 
 

Figure 1. COVID-19 and pneumonia distribution in the 

dataset, considering age and gender 

 

The datasets used in the experiments are compiled from two 

different public sources. While both datasets include over 122k 

samples, the utilization of only X-ray images with a single 

pathogen drastically limited the number of samples that could 

be utilized to train the neural network. The dataset is divided 

into two subsets training and validation (testing) sets with 70% 

training set and 30% testing set. Table 1 shows the sample size 

in the dataset, whereas Figure 1, provides an insight into the 

age and gender distribution in the dataset. 

Cohen/IEEE 8023 dataset [25] is a collection of X-ray 

images that have been extracted from online publications, 

websites, as well as through indirect collection from hospitals 

and physicians. The dataset contains several pathogen types, 

including, but not limited to, COVID-19, Pneumonia, SARS. 

Furthermore, textual clinical data such as age and gender are 

also present in the dataset. Only COVID-19 was used in this 

study from the previously mentioned dataset due to the small 

number of samples in other classes such as pneumonia (less 

than 30 images). 

The NIH Chest X-ray dataset [26] is used as a source for 

non-COVID-19 pneumonia images and comprises 112,120 
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images from 30,805 unique patients. The dataset contains X-

ray images of 14 different pathogen types; the dataset also 

contains textual clinical data such as age and gender for each 

image. The employment of this dataset mitigates the lack of 

specific non-COVID-19 pneumonia data in Cohen/IEEE 8023 

dataset. 

Only X-ray images with PA and AP views are employed. 

Two images of each patient are processed if available; the 

difference in images is the time between each scan. The 

training set is rescaled while the augmentation is randomly 

applied to achieve higher generalization. The augmentation 

pipeline consists of six steps, initial transformation is first, in 

this step the X-ray image is scaled to 1024×1024 and cropped 

while maintaining the aspect ratio of the original image. After 

the transformation, the X-ray image is fed into the 

segmentation model and the lungs are extracted. After 

segmentation of the lungs, the color space transformation is 

carried out, which transform the images to grayscale, if the 

source image is not in the required color space (grayscale), 

thus standardizing the images in the dataset regarding the color 

space. Then a final scaling of the X-ray images is carried out 

to scale the image to 256×256 based on the network 

requirement. Contrast limited adaptive histogram equalization 

(CLAHE) [27] is applied next, which enhance the contrast of 

the X-ray image. Finally, in the last step an augmentation 

transforms the image randomly and generate images that differ 

from the original images, this step is only applied for the 

training set. 

 

3.2 Proposed network 

 

The proposed network architecture is a hybrid model that 

combines Convolutional Neural Networks (CNN) [28] and 

Multi-Layer Perceptron (MLP) [29] networks. This hybrid 

network architecture aims to leverage the strengths of CNNs 

in processing image data and MLPs in handling textual clinical 

data. 

 

 
 

Figure 2. Proposed architecture for CNN-MLP network, 

illustrating both CNN network and MLP network 

 

The architecture, as depicted in Figure 2, depicts the CNN 

network for processing image data and MLP for handling 

numerical/categorical data, such as textual clinical information. 

The model incorporates three input layers: two for the image 

data and one for the textual clinical data. Using two input 

layers for the image data in the proposed network architecture 

allows for the incorporation of different types or sources of 

image data. While using multiple branches allows for the 

parallel processing and extraction of features from different 

aspects. 

The features extracted from the X-ray images using CNN 

are concatenated with the MLP network’s output, the resulted 

data is flattened and fed to the fully connected layers for 

prediction. Focal loss for binary classification [30] is 

employed to address the class imbalance that is present in the 

dataset. Binary focal loss, which is an improved version of 

Cross-Entropy Loss (CE), introduced a parameter called 

focusing parameter (γ) which allows instances that are difficult 

to classify to be penalized more severely than instances that 

are easy to classify. The focal loss is defined as: 

 

𝐿(𝑦, 𝑝) = −𝛼𝑦(1 − 𝑝)𝛾𝑙𝑜𝑔(𝑝) − (1 −
𝑦)𝑝�̂�𝑙𝑜𝑔(1 − 𝑝)  

(1) 

 
where, y∈{0, 1} is a binary class label, 𝑝 ∈[0, 1] is an estimate 

of the probability of the positive class, γ is the focusing 

parameter, α is a hyperparameter that governs the trade-off 

between precision and recall. 

The neural network was built using the Keras library and 

TensorFlow. Adam optimizer is employed with learning decay: 

the learning rate decays if a monitored variable stagnates 

during training for a specified number of epochs (i.e., 

‘patience’). The following are the network hyperparameters 

and are selected using grid search: epochs=50, batch size=16, 

initial learning rate=0.001, decay factor=0.96 and patience=5. 

 
3.3 Using metaheuristics for enhancing classification 

performance 

 
The use of metaheuristics algorithms is to explore the search 

space for a better value based on a set of pre-defined steps that 

systemically improves parts that are deemed to have poor 

performance based on calculating the prediction performance. 

 
3.3.1 Enhanced artificial ecosystem optimization 

Enhanced Artificial Ecosystem Optimization (EAEO) [31] 

is a nature-inspired metaheuristic based on Artificial 

Ecosystem Optimization (AEO) [32]. EAEO is a system-based 

optimizer that mimics the flow of energy in an ecosystem in 

three phases (production, consumption, decomposition) which 

are mimicked from the unique behaviour of the living 

organism in an ecosystem. A modified EAEO (MEAEO) 

algorithm Figure 3 is proposed to enhance the performance of 

the CNN network by optimizing the weights. 

Weight optimization is carried out when the trained weights 

of the network are extracted and taken as an individual then 

vectorised for the initial population of ME-AEO. Subsequently, 

a super-individual is created that may hinder the search for 

optimal value; to solve this, EAEO employs randomness in the 

population initialization. Furthermore, after each iteration a 

random shuffle of data is employed to avoid misdirection of 

the search when given orderly data to improve the optimization 

efficiency of MEAEO which in turn further improves the 

classification accuracy. 
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Figure 3. Pseudo-code for the enhanced  

Artificial ecosystem algorithm 

 

EAEO consists of three phases: production, consumption, 

and decomposition. In the production phase, the worst 

individual is replaced by a new individual, which is mutated 

by the lower and upper search space and the best individual. 

The newly created individual is purposed to guide other 

individuals in searching different regions. In the consumption 

phase. The new individual is further mutated, to improve the 

search for a better solution. There are three types of consumers: 

Herbivore, Carnivore and Omnivore, which are chosen based 

on a random value. In the Decomposition phase, 

decomposition coefficients are utilized for a faster decay of the 

weights; as a result, the decomposition improves the 

exploration of the EAEO algorithm. The network weights will 

be replaced if the optimized weights are better than the original 

network weights. 

3.4 Experimental setup 

 

The performance of the proposed framework was evaluated 

in terms of the impact of image augmentation and 

segmentation, and weight optimization. It is important to note 

that each experiment uses the same neural network discussed 

in section 2.2. And only differs in the pre-processing steps, 

which addresses the issues of superficial features that the 

network learns from. Image augmentation is used in all 

experiments, while image segmentation is applied only in 

experiment 3. 

Metrics that were used to evaluate the performance are 

accuracy, precision, recall (sensitivity), and F1-score [33]. 

 

accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (2) 

 

precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (3) 

 

recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (4) 

 

𝐹1𝑠𝑐𝑜𝑟𝑒 =
2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
  (5) 

 

where, TP=True Positives, TN=True Negatives, FP=False 

Positives, and FN=False Negatives. 

Confusion Matrix is also employed, which is an important 

metric that describes the performance of the classifier on the 

test dataset. 

 

 

4. RESULTS 

 

The performance of the proposed hybrid network and the 

result from the different experiments are presented in this 

section. 

An evaluation of the performance impact of merging images 

and textual data is investigated. While using the dataset, 

previously discussed in Section 3.1., the result showed an 

improvement in detection accuracy when using several data 

types, which are presented in Table 2. Images and textual data 

had an accuracy of 94% compared to using only images with 

an accuracy of 84%. The precision and sensitivity of using 

merged data types in the COVID-19 class averaged 93% while 

the average results while using images were 84%. 

 

4.1 Optimization and segmentation experiments 

 

The result in this section is obtained from the evaluation of 

the proposed network against the test subset, in other words, 

the result represents the performance of unseen data. A five-

fold cross-validation technique has been utilized to average the 

network’s performance using an independent testing set. Table 

2 summarizes the averaged results obtained from the 

experiments that have been performed in this study. 

 

 

Table 2. Performance of the different types of data used 

 
Data Type Class Precision Recall (Sensitivity) F1 Acc. 

Images 
COVID-19 80% 86% 83% 

84% 
Pneumonia 89% 83% 86% 

Images+TextualData 
COVID-19 94% 95% 94% 

94% 
Pneumonia 94% 93% 94% 
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Likewise, the confusion matrices are presented in Figure 4, 

which compares the actual true values with those predicted by 

the network. The best accuracy obtained from the experiments 

while using the MEAEO for weight optimization is 97.85% 

compared to 94.23%. The result pointed out an even prediction 

distribution of the classes compared without optimizing the 

weights; the remaining metrics follow the same trend. 

For experiment 1, the network is trained using image 

augmentation without segmentation or cropping, while 

CLAHE is employed regardless. Image and clinical in-

formation are provided as input to the neural network. 

Without weight optimization, the detection performance 

varies for all classes (the Precision ranges from 91-93%), as 

shown in Table 3 while using the modified EAEO for weight 

optimization, an increment is observed in sensitivity for 

detecting COVID-19 (the Precision ranges from 88-93%). 

Sensitivity in Table 3 for all classes reaches a value of more 

than 90% meanwhile, the non-optimized weights show lower 

accuracy, as shown in Table 3 and Figure 4 (a, d). Regarding 

general performance, sensitivity values reached 92% with the 

weight optimization and 86% without weight optimization, 

also supported by the sensitivity values. The confusion matrix, 

Figure 4 (a, d), shows that a small number of samples are 

misclassified in the COVID-19 class and can be attributed to 

weight optimization. Figure 4 compares the result of weight 

optimization with the result obtained from not using the 

optimization in terms of F1-Score. The development of 

accuracy and loss during training and evaluation is depicted in 

Figure 5, while Figure 6 depicts the improvement gained in 

using the proposed method. 

Experiment 2 applies image cropping and CLAHE, image 

augmentation was also used, which are employed as discussed 

in 3.1. The result from experiment 2 shows that experiment 1 

outperformed this experiment in terms of accuracy. The 

detection performance increment while using weight 

optimization is in line with experiment 1. 

Using the proposed optimization approach, the result in 

Table 3, shows the Precision values ranging from 86% to 91%, 

compared to 85% to 87% without utilizing the proposed 

approach for weights optimization. While Sensitivity values 

ranging from 85% to 92%. The overall performance while 

using the modified EAEO for weight optimization reached an 

accuracy of 91.24% and 89.50% without optimizing the 

weights. Figure 4 (b, e) shows the prediction performance of 

the optimization algorithm used. The development of accuracy 

and loss during training and evaluation is depicted in Figure 7. 

While the F1-score increment is shown in Figure 8. 

 

Table 3. The general performance of all experiments 

 

Exp. Class 
CNN-MLP with Weight Optimization CNN-MLP without Weight Optimization 

Precision Recall (Sensitivity) F1 Acc. Precision Recall (Sensitivity) F1 Acc. 

Exp.1 
Covid-19 92.15±1.58 92.33±0.18 92.22±1.32 

91.21±2.98 
93.21±1.02 86.52±0.11 89.68±0.28 

91.37±3.68 
Pneumonia 91.34±0.43 91.25±1.28 91.41±0.73 88.88±0.73 94.45±1.00 91.61±0.67 

Exp.2 
Covid-19 86.73±1.20 91.75±0.35 91.41±0.26 

91.24±4.52 
87.87±0.00 92.42±1.31 89.63±0.48 

89.50±5.73 
Pneumonia 94.32±0.75 91.11±1.75 91.92±0.96 91.91±1.05 85.75±0.28 88.88±0.73 

Exp.3 
Covid-19 95.42±0.88 99.05±0.50 97.07±0.65 

97.85±3.86 
94.62±1.23 95.65±1.25 94.85±1.82 

94.23±2.25 
Pneumonia 99.50±0.50 93.37±0.75 97.17±0.80 94.44±0.50 93.13±0.74 94.44±0.18 

 

 
 

Figure 4. Confusion matrices for each of the experiments, considering each of the classes separately top: with weight 

optimization, Bottom, without Weight optimization 
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Figure 5. F1-score for experiment 1 considering the weight 

optimization 

 
 

 
 

(a) 
 

 
 

(b) 

 

Figure 6. (a) Accuracy and validation accuracy during 

training for experiment 1; (b) loss and validation loss for 

experiment 1 

 
 

 
 

(a) 
 

 
 

(b) 

 

Figure 7. (a) Accuracy and validation accuracy during 

training for experiment 2; (b) loss and validation loss for 

experiment 2 

 

 
 

Figure 8. F1-score for experiment 2 considering the weight 

optimization 
 

Finally, for Experiment 3, this experiment employed lung 

segmentation, image augmentation, and CLAHE, as discussed 

in section 3.1. 

Using lung segmentation, the network was forced to focus 

on the lungs. The result shows increased sensitivity in the 

COVID-19 class compared to the other experiments. 

Experiment 3 showed the best result in sensitivity values in the 

range 95% to 97% while using the MEAEO for weight 

optimization and 95%-93% without the optimization approach, 

as shown in Table 3 and Figure 4 (c, f). The system’s overall 

performance yielded an accuracy of 97.23%, with weight 

optimization using modified EAEO and 91.5% without 

optimization. 

The development of accuracy and loss during training and 

evaluation is depicted in Figure 9. Figure 10 compares the 

result of weight optimization with the result obtained from not 

using the optimization in terms of F1-Score. 
 

 

 
 

(a) 
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(b) 

 

Figure 9. (a) Accuracy and validation accuracy for 

experiment 3; (b) loss and validation loss for experiment 3 

 

 
 

Figure 10. F1-score for experiment 3 considering the weight 

optimization 

 

 

5. DISCUSSION 

 

Due to the imbalanced classes (number of samples in each 

class) in the dataset, the focal loss has been employed to 

mitigate the bias from the inherited issue of the problem. As 

shown in the result that optimizing the weights using a 

metaheuristic algorithm is beneficial. As an outcome, the 

experiments that employ weight optimization have higher 

scores; utilizing weight optimization is advantageous in 

accurately predicting the classes. However, the gap between 

the optimized and non-optimized experiments is not 

significant in terms of accuracy. 

 

5.1 Interpreting the improvements gained from applying 

modified EAEO 

 

As shown earlier in Table 3, experiments using the proposed 

optimization technique improved prediction performance 

compared to those that did not employ weight optimization, 

this indicates a possible performance loss if exclusively trained 

with traditional training algorithms; however, when applied to 

the network, the suggested technique would gain an accuracy 

increase of 2-5% compared to utilizing typical training method. 

This increase is attributed to improved search methods, which 

can escape from local optima more effectively. 

Furthermore, the MEAEO’s capability to achieve higher 

performance is attributed to utilizing the trained weights as an 

individual in the EAEO population. This approach assisted the 

MEAEO to obtain better results in the optimization process. 

Figure 11 depicts the development of the fitness value. The 

fitness function value (loss) continues to converge over the 

transformation process and seems relatively consistent in the 

end. 

It should be noted that the cost function (loss) curve appears 

to have an inconsistency post-convergence since batches are 

employed with a relatively small number of samples while 

performing the optimization, in other words, the test set is 

altered in each cycle, resulting in oscillations in the fitness 

function output; however, the overall trend of the curve is 

positive. 

 

 
 

Figure 11. Loss function error curve in experiment 3 

 

5.2 Comparing with other models 

 

To determine how well the COVID-19 classification tests 

performed and to evaluate the effectiveness of the proposed 

method (which used medical data 579 samples). Table 4 

contains a list of recent work in literature that has been 

referenced as a comparison to the performance of the proposed 

framework. 

It is important to note that the current dataset and the 

problem formulation primarily differ from the mentioned 

studies, making a fair comparison with existing methods 

difficult. However, an attempt to provide an overview of these 

studies to determine the efficiency of the proposed approach in 

detecting COVID-19 has been con-ducted. 

The proposed novel framework in this study performed 

better regarding accuracy than the recent studies Table 3. CNN 

model-based binary classifier is employed on 746 CT images 

containing COVID-19 and healthy patients, which achieved an 

accuracy of 86.9% [34]. The overall accuracy of 89.6% is 

achieved with 93% precision in the COVID-19 class while 

using transfer learning based on the ImageNet dataset [35]. 

However, the use of transfer learning based on the ImageNet 

dataset for biomedical image classification is not 

recommended. The experiments with image segmentation 

done by the authors achieved an accuracy of 91.5% when 

analysing three classes with an F-score of 78.57±1.15% in the 

COVID-19 class [36]. The proposed network achieved an 

accuracy of 93.94% in classifying COVID-19 [37]. 

Furthermore, the authors used a Generative adversarial 

network to increase the training data. The authors [17] 

proposed a late fusion (merging) of CT scans and textual 

clinical data to assess the severity of COVID-19 in patients. 

They reported a classification accuracy between (95.4%-

97.7%) and high class-specific accuracy (90.6%-99.9%). 

Ahsan et al. [38] used multiple data types to classify COVID-

19 and achieved an accuracy of 95.38%; however, the dataset 

has few samples. To the best of our ability, a model 

reconstruction from the study [38], which is comparable to the 

proposed model in this study, achieved an accuracy of 80.5% 

using the dataset in section 2.1. A binary classification based 
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on the encoder de-coder model with random forest (RF) as a 

classifier, achieved 97.78% [39]. The dataset used in training 

the network consists of 2482 CT scans, of which 1230 images 

for patients not infected with COVID-19 “(but infected with 

other pulmonary diseases)”. While the suggested approach in 

this paper offers the added benefit of being able to use both 

medical imaging scans and textual clinical data. Although the 

improvement appears to be marginal (0.07%), there are 

advantages to using such a method. Such as the ability to 

handle information fusion, by combining different data types, 

we can demonstrate the viability of such method that can 

potentially provide a more comprehensive representation of 

the data, leading to improved accuracy in the classification task 

when compared to using X-rays or CT scans alone. 

 

Table 4. Comparison of the performance of the proposed framework with current studies in the literature 

 
Reference Data Type Approach Accuracy 

Shambhu et al. [34] X-ray CNN 86.9% 

Khan et al. [35] X-ray Transfer Learning-Xception 89.6% 

Arias-Londoño et al. [36] X-ray CNN+Lung Segmentation 91.53% 

Sakib et al. [37] X-ray CNN+GAN 93.94% 

Xu et al. [17] CT Scans+Textual data CNN+SVM 95.40-97.70% 

Ahsan et al. [38] X-ray Scans+Textual data CNN+MLP 96.3% 

Goel et al. [39] CT scans CNN 97.78% 

Proposed Framework X-ray Scans+Textual data CNN+MLP 97.85% 

 

5.3 Potential factors affecting the results 

 

Several bias factors might affect the result. The lack of well 

documented images with a different detector that might use a 

different method in capturing the scan could affect the 

consistency of the results. In COVID-19 classification, it is 

necessary to use chest X-ray images that are adequate for this 

purpose. Most studies in the literature employed various 

techniques to handle biological data in their approaches. These 

pro-posed techniques are accepted in conventional imaging 

classifications. Biomedical im-ages should be addressed with 

caution, and specific rules must be followed while processing 

them so that the modified images do not differ from the 

original image. Due to the newly developing knowledge in this 

area, it is impossible to recommend a method or a set of 

techniques that is more efficient in identifying COVID-19 

from a chest X-ray image. Most studies have an accuracy rate 

of more than 85%, which is statistically a very high degree of 

accuracy. Aiming for 100% accuracy would be idealistic, as 

even a tiny percentage of misdiagnoses is problematic. 

AI systems may have some utility in a supervised 

therapeutic context. We argue that putting these techniques 

into clinical practice requires more than just classification. As 

we show in experiment 1, it should be approached with caution. 

In contrast to what we saw in experiments 1 and 2, the result 

showed that the system recognizes are-as to non-diagnostic 

regions. As a result, these findings are not in line with a clinical 

viewpoint. Lung segmenting is required to direct the neural 

network’s attention to the lung organ, as shown in experiment 

3. 

 
 

6. CONCLUSIONS 
 

In this study, a COVID-19 framework was proposed, which 

incorporated several techniques such as, lung segmentation 

and augmentation, merging neural networks, and an 

optimization algorithm (modified EAEO). These techniques 

assist in creating a robust framework to classify COVID-19 

and pneumonia using a different dataset for each pathogen. A 

hybrid network is a viable approach to analyse X-ray images 

that correspond to pneumonia, COVID-19 patients, and 

biomedical images in general. The results demonstrated that 

merging several CNNs with a multi-layer perceptron and 

optimizing the weights using the modified EAEO can be 

beneficial to increase the system robustness. Furthermore, the 

employment of the lung segmentation technique aided in 

achieving a reliable classification result that is not affected by 

unnecessary features. The impact of merging several data 

types such as images and textual clinical da-ta is beneficial in 

improving classification accuracy. The proposed framework 

obtained an accuracy of 97.85% using the data in section 2.1, 

which is considerably better than most systems in the literature 

that predict COVID-19 from pneumonia. 

A modified version of EAEO was proposed to optimize the 

neural network’s weights and mitigate the performance loss 

from using typical training methods to train the neural network. 

In addition, weights of the hybrid network are incorporated in 

the initial population of the modified EAEO to guide the search 

to optimal values. The results obtained from all the 

experiments support the idea that an optimization technique 

can further enhance the performance of a neural network. 

Moreover, merging different data types such as images and 

textual clinical data improves classification accuracy. 
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