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Human security screening constitutes a vital component in public safety assurance across 

varied environments like airports, governmental edifices, and additional public spaces. 

Among the paramount challenges inherent in human security screening lies the immediate 

and precise discernment of prospective threats within X-ray images. Despite the potential 

exhibited by convolutional neural networks (CNNs) in image recognition tasks, including 

the detection of targets in X-ray imagery, the substantial computational burden and memory 

prerequisites often render real-time deployment impracticable on devices with limited 

resources. In the present study, a novel lightweight CNN approach, melding Yolov5s and 

GhostNet models with the coordinate attention mechanism, is introduced to alleviate the 

constraints found in existing techniques. By employing this combination, efficiency in 

computation and model accuracy has been augmented, thereby addressing the challenges of 

swift and accurate threat identification. Performance evaluation, conducted on a publicly 

accessible dataset comprising X-ray images pertinent to human security screening, 

demonstrated the superior detection accuracy and reduced storage footprint of the proposed 

model in comparison to prevailing alternatives. Overall, the approach delineated herein 

presents an efficacious and streamlined solution for real-time human security screening 

image recognition on resource-constrained devices, contributing a promising advancement 

in the field.  
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1. INTRODUCTION

In contemporary society, the evolution of security threats is 

marked by increasing complexity and sophistication. New 

methods of concealing weapons, explosives, and illicit goods 

are continually being developed. The limitations of traditional 

manual inspection methods in detecting these concealed 

threats can result in significant security vulnerabilities. 

Although certain enterprises have introduced human security 

screening systems utilizing X-ray imaging technology, these 

systems are not without drawbacks. Displaying the scanned 

human body's image, where carried items are made apparent, 

the need for manual checking is negated. Thus, human security 

screening systems have become essential in domains such as 

transportation, public events, and border control, striving to 

detect potential threats and bolster public safety. However, 

current methods are often reliant on human operators, making 

them potentially subjective, prone to error, and time-

consuming. 

The utilization of automated image recognition systems 

based on deep learning techniques has been explored, 

demonstrating significant potential for accurately and 

efficiently identifying security threats within X-ray images. 

Nevertheless, a complex background, comprising crowded 

scenes or cluttered environments, often present in human 

security screening images, raises the challenge of 

distinguishing between pertinent objects and irrelevant 

background elements. Potential threats or prohibited items 

may be obscured within the surrounding context, thus 

underscoring the necessity of developing novel approaches for 

accurate segmentation and extraction. 

While research related to X-ray image recognition in 

baggage screening abounds, direct application to human 

security systems is hindered by the distinctive mono-energy 

detector imaging methods used in the latter, resulting in grey-

scale rather than color images. Several deep learning models, 

such as CNNs, have been applied to baggage screening [1-6], 

capitalizing on their capacity to learn hierarchical 

representations. Although their ability to discern intricate 

features and patterns has been leveraged to address various 

security threats, the high computational complexity and 

memory requirements limit their applicability in resource-

constrained environments. The need for lightweight CNN 

models that balance accuracy with reduced computational and 

memory demands becomes evident. 

In the present investigation, a lightweight CNN model-

based approach for human security screening image 

recognition is introduced. By employing transfer learning and 

model compression techniques, the computational complexity 

and memory prerequisites of the CNN model are minimized 

without a commensurate reduction in performance. A novel 

dataset encompassing diverse human security screening 

objects and materials is employed to evaluate the approach, 

and a comparison is made with existing methods. The salient 

contributions of this study encompass: 

(1) The introduction of a lightweight CNN model-based

approach for human security screening image recognition, 

achieving unparalleled performance while significantly 
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curtailing computational complexity and memory demands. 

(2) Evaluation utilizing a new dataset, indicative of various 

human security screening objects and materials, revealing the 

approach's applicability in realistic scenarios. 

(3) The implementation of a coordinate attention 

mechanism within the backbone network layer of the proposed 

lightweight CNN model. 

(4) Insight into the trade-offs between model size and 

performance within human security screening image 

recognition. 

The remainder of this article is organized to provide a 

comprehensive examination of the topic. Section 2 offers a 

review of the pertinent work on security screening systems and 

existing image recognition approaches. Section 3 delineates 

the proposed approach, including an in-depth discussion of the 

model architecture. Section 4 presents a thorough analysis of 

the experimental results, encompassing dataset description, 

baseline comparisons, and performance evaluation. 

 

 

2. RELATED WORK 

 

Research results specifically designed for human security 

screening applications are, at the time of writing, scarce. 

Nevertheless, the application area of human security screening 

can be broadly understood as a specific domain of image 

recognition, and as such, the existing research in the broader 

field of image recognition offers insights. This section 

elaborates on these existing approaches, subdivided into three 

main areas: traditional feature-based methods, deep learning-

based methods, and lightweight CNN models. 

 

2.1 Traditional feature-based methods 

 

Early methods of image recognition within the context of 

human security screening were often reliant on handcrafted 

features combined with traditional machine learning 

algorithms. Discriminative features were extracted from 

security screening images using techniques such as Histogram 

of Oriented Gradients (HOG) [7], Scale-Invariant Feature 

Transform (SIFT) [8], and Local Binary Patterns (LBP) [9]. 

Subsequently, these features were coupled with classifiers like 

Support Vector Machines (SVM) [10] or Random Forests [11] 

for the detection and classification of objects. 

While moderate success was attained by these approaches, 

significant challenges were encountered. Complex variations 

in image appearance, cluttered backgrounds, and the need for 

high-speed real-time processing were among these difficulties. 

Moreover, traditional feature-based approaches were found to 

lack end-to-end learning capability, resulting in sub-optimal 

solutions. The separated optimization of different stages, such 

as feature extraction, selection, and classification, often 

limited overall performance. 

 

2.2 Deep learning-based methods 

 

The introduction of deep learning, particularly CNNs, 

ushered in a new era in image recognition, applicable also to 

human security screening. Through the utilization of CNNs, 

remarkable performance enhancements were realized in 

various computer vision tasks, including but not limited to 

object detection and classification [12-16]. The inherent 

capability of CNNs to automatically learn hierarchical 

representations from raw image data eradicated the necessity 

for handcrafted features. 

Despite these successes, it must be noted that traditional 

CNN models were often found to be computationally taxing. 

This limitation constrained their real-time deployment, 

especially in environments with limited computational 

resources. 

 

2.3 Lightweight CNN models 

 

In response to the identified need for computational 

efficiency within human security screening applications, 

attention was directed towards the development of lightweight 

CNN models. These models, epitomized by Yolov5s [17], 

GhostNet [18-20], MobileNet series [21-23], ShuffleNet series 

[24, 25], EfficientNet series [26, 27], and SqueezeNet series 

[28, 29], were designed to balance recognition performance 

with reduced model complexity and computational demands. 

A particular emphasis was placed on real-time object 

detection capabilities in models such as Yolov5s, while 

GhostNet focused on efficiency and model size reduction. 

Innovations were introduced across various models, such as 

depthwise separable convolutions in MobileNetV1, inverted 

residual blocks in MobileNetV2, and novel architecture search 

strategies in MobileNetV3. The ShuffleNet series reduced 

computational complexity through specific techniques, 

including pointwise group convolutions and channel shuffling. 

Meanwhile, the EfficientNet series offered a scalable range of 

models tailored to specific requirements and constraints. 

A balance between model accuracy and computational 

efficiency has been sought in recent works, exemplified by 

optimizations to the Yolov5s model, resulting in a lightweight 

improved CNN model based on GhostNet and the coordinate 

attention mechanism [30]. Such efforts have contributed to 

enhancing both the efficiency and accuracy of image 

recognition, thereby reducing dependence on hardware 

capabilities. 

The landscape of human security screening leverages a rich 

tapestry of methods drawn from the broader field of image 

recognition. From traditional feature-based techniques to 

cutting-edge lightweight CNN models, the evolving nature of 

this field continues to present opportunities and challenges. 

The ongoing search for a synergistic balance between 

accuracy, efficiency, and computational demands serves as a 

focal point for current and future research, reflecting the 

complex and dynamic nature of human security screening 

applications. 

 

 

3. THE PROPOSED METHOD 

 

3.1 Yolov5s and GhostNet 

 

Two salient architectures central to the field of object 

detection and classification, namely Yolov5s and GhostNet, 

are to be discussed herein. 

 

3.1.1 Yolov5s 

The Yolov5s, a subsequent variant of the You Only Look 

Once (YOLO) series, is distinguished for its real-time object 

detection competencies. Within this architecture, an 

equilibrium is struck between speed and accuracy, with a 

streamlined single-stage approach employed to predict 

bounding boxes and class probabilities in a single pass. A 

combination of backbone networks, inclusive of 
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CSPDarknet53 [31], is utilized to extract features at varying 

scales, a process that culminates in precise object localization 

and detection. 

Four primary components encompass the architecture of 

Yolov5s: the Input, Backbone, Neck network, and Prediction 

(output) segments. Within the Backbone, the Focus, SPP, and 

CSP structures are incorporated. 

 

3.1.2 GhostNet 

The GhostNet model represents a lightweight CNN 

architecture, tailored to optimize both efficiency and size, 

without compromising accuracy. In this innovative design, the 

Ghost block is introduced, a construct that exploits branch 

replication alongside sparse connections to minimize 

computational intricacy. 

By capitalizing on fewer parameters, efficient feature 

extraction is attained within GhostNet, an accomplishment 

evidenced by its commendable performance across various 

domains, such as image classification, object detection, and 

face recognition. The parsimonious nature of GhostNet's 

design renders it an apt solution for deployment on devices 

constrained by resources, thereby enabling adept inference in 

scenarios demanding edge computing. 

The Yolov5s and GhostNet models exemplify modern 

achievements in object detection and classification, 

respectively. Yolov5s leverages a single-stage approach to 

balance efficiency and accuracy, whereas GhostNet focuses on 

reducing computational complexity through novel design 

features. These architectures lay the foundation for an array of 

applications, particularly where real-time processing and 

resource efficiency are paramount. The insights provided by 

these models may pave the way for future innovations in 

object detection and recognition, reinforcing the essential 

nature of continuous research and development within this 

dynamic field. 

 

3.2 The lightweight model 

 

3.2.1 Modification of Yolov5s structure 

In this section, an alteration to the structure of Yolov5s is 

presented to lessen the quantity of parameters within the model 

and augment the speed of inference, while the accuracy of 

recognition is preserved. The specific modifications 

encompass the following: 

• Focus LM Block: 

A 960×960×3 image is first subjected to a down-sampling 

slicing operation, resulting in a 480×480×12 feature map. In a 

bid to mitigate the loss of image information during 

downsampling, the feature map is subsequently convolved 

with 3×3×32 convolution kernels, where a stride of 1 and 

padding of 2 are utilized, obtaining a 480×480×32 feature map. 

Maximum pooling is then employed to further truncate the 

feature parameters, ultimately leading to a 240×240×32 

feature map. The output parameters are notably reduced in 

comparison to the original Focus block. 

• GBB (Ghost Bottleneck Block): 

The Ghost bottleneck block, specifically crafted for small 

CNNs, is explicated in literature 18. This novel construction 

bears a resemblance to the Basic Residual Block found in 

ResNet, comprising an integration of multiple convolutional 

layers coupled with a shortcut connection. As depicted in 

Figure 1, the Ghost bottleneck block bifurcates into two 

distinct branches with strides of 1 and 2. Each branch is 

characterized by a pair of sequentially stacked Ghost blocks, 

with their detailed structure elucidated in Figure 2. 

 

 
 

Figure 1. The Ghost bottleneck block 

 

 
 

Figure 2. The Ghost block 

 

Within these branches, the first Ghost block serves to 

augment the number of channels in the input feature map, 

thereby broadening the scope for subsequent computational 

processes. Conversely, the second Ghost block functions to 

curtail the number of channels in the output feature map, 

aligning with the network's diameter structure. This reduction 

is orchestrated to foster connectivity in information 

transmission between the two Ghost blocks through the 

diameter structure. 

A nuanced examination of the accompanying figure reveals 

a subtle disparity between the two Ghost blocks. Specifically, 

the first Ghost block employs the Relu activation function, and 

the subsequent layers leverage the batch normalization (BN) 

process. Such an architectural decision facilitates an 

optimization of the feature map within the Ghost block. The 

resulting structure not only enhances the detection efficiency 

of the model but also concurrently minimizes the number of 

model parameters and computational operations. 

The innovative design of the Ghost bottleneck block 

accentuates a finely-balanced interplay between efficiency and 

complexity, fortifying the model's agility without undermining 

its functional integrity. By carefully calibrating the number of 

channels and integrating activation and normalization 

processes, the GBB offers a promising pathway toward 

optimized object detection in constrained computational 

environments. 

• CAB (Coordinate Attention Block): 

The CAB, akin to the SE (Squeeze-and-excitation) [32] 

block, encodes channel relations and long-range dependencies 

with acute positional information. The delineation of 

coordinate information embedding and coordinate attention 

generation is structured in Figure 3. 

(1) Coordinate Information Embedding 

In the initial phase of the process, the portion where 

coordinate information is embedded is identified. Typically, 

channel attention employs global pooling to universally 

encode spatial details as channel descriptors, an approach that 

often proves challenging in preserving the specific positional 

information. In an innovative departure from conventional 

methods, global pooling is decomposed into a duo of one-

dimensional feature encoding operations to enable the 

attention block to apprehend spatial long-range dependencies 

with pinpoint location accuracy. 
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To elucidate, for a given input X, each channel is 

individually encoded along the horizontal and vertical 

coordinate axes using pooling kernels with dimensions (H, 1) 

and (1, W), respectively. This encoding results in the output of 

the cth channel of height ℎ, as expressed by: 

 

𝑍𝑐
ℎ(ℎ) =

1

𝑊
 ∑ 𝑥𝑐(ℎ, 𝑖)

0≤𝑖<𝑤

 (1) 

 

In a parallel fashion, the output of the cth channel of width 

w is articulated as: 

 

𝑍𝑐
ℎ(𝑤) =

1

𝐻
 ∑ 𝑥𝑐(𝑤, 𝑗)

0≤𝑗<ℎ

 (2) 

 

These dual transformations collectively perform feature 

aggregation across two spatial orientations, culminating in a 

pair of direction-aware attention maps. Contrasting sharply 

with the SE block's method of generating a singular feature 

vector, these bifurcated transformations empower the attention 

module to not only capture long-range dependencies along a 

single spatial trajectory but also conserve precise location 

information along the other. Such a nuanced approach 

facilitates the network's ability to more accurately pinpoint 

targets of interest. The operational essence of this coordinate 

information embedding aligns with the X Avg Pool and Y Avg 

Pool segments in Figure 3, marking a significant advancement 

in the domain of spatial awareness and target recognition. 

 

 
 

Figure 3. The coordinate attention block 

 

(2) Coordinate Attention Generation 

Subsequent to the coordinate information embedding, 

further enhancement of the spatial awareness and target 

recognition within the model is necessitated. This need gives 

rise to the design of a coordinate attention generation operation, 

which exploits the representation generated by the embedding 

module. Characterized by global sensory fields and accurate 

location information, the newly generated attention graph is 

subject to three defining criteria. Firstly, the transformation is 

constrained to be as streamlined and efficient as possible, 

suiting applications within mobile environments. Secondly, it 

must be adept at leveraging the captured location data to 

precisely delineate the regions of interest. Lastly, an inherent 

capability to efficiently discern the relationships between 

channels is indispensable. 

This aspect of coordinate attention generation is 

meticulously detailed in the remaining portion of the 

aforementioned diagram, exemplifying an elegant synthesis of 

simplicity, precision, and efficiency. 

As corroborated by the insights presented in literature 29, 

an evaluation of three prevailing attentional mechanisms—SE, 

CBAM [33], and CAB—reveals a clear superiority of CAB in 

terms of both accuracy and computational velocity. 

Consequently, the CAB attentional mechanism is adopted, 

emblematic of a calculated decision to augment both the 

computational efficiency and accuracy of the model under 

discussion. 

• Proposed Lightweight Model: 

Upon the foundation of Yolov5s, a lightweight network 

model is crafted. The Backbone and Neck portion of this 

model witness the Focus block of Yolov5s supplanted by the 

Focus LM block, with the attention block CAB appended 

thereafter; the CSP block of Yolov5s is exchanged with the 

GBB block, followed by the convolution block Conv, and 

finally, the anterior and posterior feature maps are 

amalgamated by Concat, and the results are channeled to the 

output layer, as depicted in Figure 4.  

The input and output parameters of each block in Figure 4 

are listed in Table 1, from which it can be seen that the number 

of feature parameters of the input image is reduced a lot after 

a series of transformations are processed, which improves the 

computational speed of this lightweight model.  

The modifications to the Yolov5s structure described herein 

underscore a strategic approach to enhancing computational 

efficiency without sacrificing recognition accuracy. Through 

innovative block designs and strategic implementation of 

existing methodologies, the lightweight model presents a 

promising avenue for object detection and recognition in 

constrained environments. Further exploration of these 

architectural changes may herald advancements in real-time 

processing capabilities, reaffirming the essential role of 

continuous innovation within the field. 

 

 
 

Figure 4. The lightweight CNN model 
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Table 1. The parameters of the proposed lightweight model 

 
Input Sub Module Convolution Stride Output 

960×960×3 Focus LM 32×3×3 1 240×240×32 

240×240×32 CAB 64×3×3 1 120×120×64 

120×120×64 GBB 64×3×3 1 120×120×64 

120×120×64 Conv 64×3×3 2 60×60×64 

60×60×64 GBB 128×3×3 1 30×30×128 

30×30×128 Conv 128×3×3 1 30×30×128 

30×30×128 GBB 256×3×3 1 30×30×256 

30×30×256 SPP 256×1×1 1 30×30×256 

30×30×256 GBB 128×3×3 1 30×30×128 

30×30×128 Conv 256×1×1 2 15×15×256 

15×15×256 Upsample   30×30×256 

30×30×512 GBB 256×3×3 1 30×30×256 

30×30×256 Conv 128×3×3 2 15×15×128 

15×15×128 Upsample   30×30×128 

30×30×256 GBB 128×3×3 1 30×30×128 

30×30×128 Conv 256×3×3 1 30×30×256 

30×30×256 GBB 512×3×3 2 15×15×512 

15×15×512 Conv 512×1×1 1 15×15×512 

 

 

4. EXPERIMENT 

 

4.1 Datasets 

 

In the absence of publicly available datasets in the field of 

human security screening, a dataset was assembled from 

images actually collected by human security screening 

machines over a period exceeding five years. This collection 

comprises a total of 10,000 images, 7176 of which contain 

prohibited items (e.g., guns, knives). The remaining images 

feature items such as belt buckles, mobile phones, and keys, 

but are devoid of prohibited objects. A partitioning of the 

dataset into training and test sets was conducted at a ratio of 

70% and 30%, respectively. A representative example from 

this dataset is depicted in Figure 5. 

 

 
 

Figure 5. Sample images of the dataset 

 

4.2 Experiment environment 

 

The experimental setting employed in this study is 

delineated as follows: an operating system of Windows 11, 

CPU of Intel Core i9-13900K, memory capacity of 64GB, a 

graphics card comprising NVIDIA GeForce RTX4090, a 

CUDA version of 11.6, and a PyTorch version of 1.12.1. 

 

4.3 Evaluation metrics 

 

Precision rate, recall rate, and average precision were 

selected as the model accuracy evaluation indices to assess the 

experimental outcomes. These metrics are mathematically 

represented below: 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝐴𝑃 = ∫ 𝑝(𝑟)𝑑𝑟
1

0

 

 

𝑚𝐴𝑃 =  
∑ 𝐴𝑃𝑖

𝑐
𝑖=1

𝐶
 

 

where, TP (True Positive), FN (False Negative), FP (False 

Positive), and TN (True Negative) are defined accordingly. 

The formulation of average accuracy and mean Average 

Precision (mAP) is also articulated. 

 

4.4 Experimental results 

 

Within the experimental framework delineated in Section 

4.2, the proposed lightweight model was implemented for 

human security screening. Figure 6 exhibits the detection 

outcomes. A comparison was conducted using the following 

methodologies to authenticate the overall performance of the 

proposed models: 

(1) Training of the dataset with the unoptimized Yolov5s 

model followed by validation on test data. 

(2) Integration of the Ghostnet block with Yolov5s and 

substitution of the CSP block in Yolov5s with Ghostnet. 

(3) Introduction of the CAB module based on (2). 

(4) Implementation of the lightweight model proposed 

herein: Replacement of the Focus module in Yolov5s with 

Focus LM, addition of the CAB module, and substitution of 

the CSP module in Yolov5s with Ghost bottleneck. 

Tables 2 and 3 demonstrate the results of the comparison, 

indicating competitive performance in mAP and AP50 values. 

Moreover, the proposed model exhibits significantly fewer 

parameters and lower computational complexity (FLOPs). 

These findings underscore the efficacy and efficiency of the 
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suggested lightweight CNN model for human security 

screening image recognition. 

The detection outcomes of three types of prohibited items 

(namely, guns, knives, and scissors) carried by the human 

body are presented in Figure 6. Observations from this figure 

elucidate that, notwithstanding the placement of these 

prohibited items in various parts of the human body, accurate 

detection was achieved by the lightweight CNN model. The 

detection time for each image was found to be less than 40 ms, 

affirming that the lightweight model satisfies the real-time 

detection requirements for human security screening image 

recognition. 

 

 
 

Figure 6. Image recognition results of the proposed model 

 

Table 2. Performance comparison of different models 

 
Model Parameters (M) FLOPs (G) mAP AP50 

Yolov5s 7.3 16.97 0.782 0.811 

Yolov5s+GhostNet 5.6 10.39 0.791 0.815 

Yolov5s+GhostNet+CAB 3.9 7.12 0.802 0.824 

Proposed Model 2.8 3.13 0.832 0.847 

 

Table 3. Comparison of the AP value of different models 

 
Items Yolov5s Yolov5s+GhostNet Yolov5s+GhostNet+CAB Proposed Model 

gun 0.802 0.807 0.818 0.833 

knife 0.798 0.808 0.82 0.845 

scissor 0.722 0.716 0.724 0.764 

 

 

5. CONCLUSION 

 

In the present study, a lightweight CNN model uniquely 

tailored for human security image detection was introduced. 

This model’s architecture was enriched by integrating the 

CAB attention mechanism module with Yolov5s, substituting 

the CSP module in Yolov5s with the Ghost bottleneck module, 

and modifying the Focus module. 

Several advancements were realized through these 

modifications: 

(1) Reduction in Parameter Complexity: By refining the 

Focus module, the number of parameters in the input data was 

notably reduced. This alteration led to an overall simplification 

in model architecture without compromising performance. 

(2) Enhanced Accuracy: The introduction of the CAB 

module played a pivotal role in enhancing the precision of 

human security image detection. By efficiently leveraging 

spatial information and channel relationships, a more nuanced 

understanding of the detection targets was facilitated. 

(3) Optimization of Computational Process: The 

employment of the Ghost bottleneck module served to 

streamline the calculation process within the model. By doing 

so, both the quantity of parameters required in the 

computational process and the overall calculation speed were 

significantly improved. 

Through rigorous experimental comparisons, it was found 

that the augmented model maintained accuracy while 

demonstrating marked reductions in both parameters and 

computational quantities. This dual achievement of preserving 

quality while enhancing computational efficiency positions 

the proposed model as a potent solution that fulfills the 

stringent demands of human security image detection. 

The findings of this research shed light on innovative 

methodologies for minimizing computational complexity 

without sacrificing detection accuracy. The incorporation of 

the CAB attention mechanism and Ghost bottleneck module, 

along with modifications to the Focus module, underpins a 

powerful, lightweight architecture that can be adapted to other 

related fields beyond human security screening. 

The present study marks a significant contribution to the 

existing body of knowledge in the realm of security image 

detection. It provides a robust foundation for future work, 

particularly in exploring further architectural enhancements, 

the application of these principles to other detection challenges, 

and in the real-world implementation in security screening 

scenarios. 

In conclusion, the proposed lightweight CNN model, 

characterized by the judicious integration of several novel 

components, represents a promising avenue for advancing the 

efficiency and effectiveness of human security image 

detection. The insights gained from this research may pave the 

way for broader applications and continued innovation in the 

field. 
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