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In this study, we propose a Second Order Shearlets (SOS) based system for Oral Cancer 

Classification (OCC) that leverages histopathological images. The fundamental premise of 

the system is the observable variations in texture patterns between normal and abnormal 

cells within these images, which can be exploited for differentiation. The images undergo a 

transformation from the Red-Green-Blue (RGB) color space to the Hue-Saturation-Value 

(HSV) color space, followed by the extraction of co-occurrence texture features via the SOS 

system. Further enhancement of feature extraction is achieved by applying a median filter 

for de-noising the histopathological images. The proposed SOS-OCC system, equipped with 

a probabilistic classifier at the final stage, was presented with an assortment of 1224 images 

for evaluation. The results indicated a noteworthy classification accuracy of 98.6% when 

employing stratified k-fold cross-validation, thereby underlining the system's efficacy in 

identifying oral cancer-related abnormalities. Moreover, a comparative analysis was 

conducted with Wavelet, Curvelet, and Contourlet-based representation systems to 

underscore the superior performance of the SOS-OCC system. This study provides valuable 

insights into the application of the SOS approach to oral cancer classification and sets a 

promising precedent for future research. 
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1. INTRODUCTION

Oral cancer, a result of cellular mutations within the oral 

cavity, manifests a higher incidence in males compared to 

females. Risk factors include smoking, excessive alcohol 

consumption, a sub-optimal diet, and a familial history of 

cancer. Early diagnosis enhances survival rates, thus 

necessitating the development of effective classification 

systems [1]. 

Prior studies have focused on various aspects of Oral 

Cancer Classification (OCC) systems. For instance, one 

utilized temporal features, energy, and entropy components 

from each color channel of median filtered histopathological 

images, employing k-nearest neighbors and support vector 

machine classifiers for OCC [1]. Another study implemented 

a Convolutional Neural Network (CNN) based OCC system 

with optimally adjusted layers and filters for high performance 

extraction of deep features [2]. Efforts to reduce computational 

complexity led to the development of a lightweight CNN 

model with fewer parameters [3], while an attention-based 

CNN system was designed to offer two paths for efficient 

classification: compression and learning [4]. 

In addition to these, the literature also presents OCC 

systems that employ a fuzzy Support Vector Machine (SVM) 

[5], a multiple instance learning-based approach [6], and 

asymmetric residual hash-based histopathological image 

retrieval [7]. Other studies have focused on the development 

of a matrix form classifier [8], dictionary learning for 

histological image classification [9], an auto-encoder based 

system [10], and a feature blending approach [11]. Spatial and 

morphological methods have also been explored [12], as have 

adaptive fuzzy systems [13], trust counting-based systems [14], 

and the use of a golden eagle optimization algorithm for 

feature selection [15]. Furthermore, the influence of 

dimensionality within CNN has been examined [16]. 

In light of the aforementioned studies, the present work 

aims to explore the extraction of textures from 

histopathological images using Second Order Shearlets (SOS) 

for OCC. The proposed approach involves the use of co-

occurrence features of SOS sub-bands for the discrimination 

between normal and abnormal images. 

The remainder of the paper is structured as follows: Section 

2 elaborates on the design of the SOS-based OCC system, 

while Section 3 presents a comparative analysis of the SOS-

OCC system's results with those of Wavelet [17], Curvelet 

[18], Contourlet [19], and First Order Shearlets (FOS) based 

systems. Finally, Section 4 provides a conclusion, drawing 

upon the experimental results. 
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2. PROPOSED SOS FOR OCC 

 

The structures within the histopathological images may give 

rise to either low-level or high-level textures. In many cases, 

such textures are influenced by disease processes. The 

proposed SOS for the OCC system is considered a binary 

pattern recognition system with three stages; preprocessing, 

feature extraction, and probabilistic classification. Figure 1 

shows the block diagram of the SOS based OCC system. 

 

 
 

Figure 1. Proposed SOS-OCC system using 

histopathological images 

 

2.1 Preprocessing 

 

This is the first stage of the SOS-OCC system where noise 

removal and colour space conversion occur. A median filter, 

which is a non-linear filter, is employed to remove noise and 

preserve edges [1]. This study uses a small window of 3×3 and 

finds the median value inside the window. The center pixel is 

replaced by the median value to restore the noise-free pixel. 

This process is repeated until the last pixel is restored. It is an 

order statistic filter that operates on the data inside a window 

of size (2m+1, 2m+1). It is defined by 
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where, the noisy image is represented as I and the pixel’s 

location are (i,j). Figure 2(a) shows the histopathological 

images and Figure 2(b) shows its corresponding noise free 

images. 

After noise removal, RGB to HSV (Hue, Saturation, and 

Value) colour space conversion takes place. The HSV colour 

space aligns with the human vision more closely than the RGB 

colour space. It represents the models in such a way that how 

colour appears under the light. The conversion formulae [20] 

are as follows: 
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where, H, S, and V represent the Hue, Saturation and Value 

components in the HSV colour space corresponding to R (Red), 

G (Green), and B (Blue) components in the RGB colour space. 

Figure 3(a) shows the HSV images of RGB images in Figure 

2(b) and the components of HSV colour spaces are shown in 

Figure 3(b) to Figure 3(d). 

 

 
 

Figure 2. (a) Input histopathological images (b) Noise free 

images by median filter 

 

 
 

Figure 3. (a) HSV images of RGB images in Figure 2(b); (b) 

H channel; (c) S channel; (d) V channel 

 

2.2 Feature extraction 

 

In this stage, a perception-based statistical method is 

employed to extract histopathological images’ features. The 1st 

order stochastic features are based on the Probability Density 

Function (PDF) distribution of intensities. In contrast, the 2nd 

order features are obtained from the PDF of pairs of intensity 

levels. The co-occurrence features are based on the estimation 

of the 2nd order joint PDF 𝑓(𝑖, 𝑗|𝛥𝑥, 𝛥𝑦) where the spacing 

between the pair of pixel (i,j) in the x and y directions are 

represented by𝛥𝑥  and 𝛥𝑦  respectively. It is defined for an 

input image I of size N×N. 
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The application of Eq. (6) produces a co-occurrence matrix 

from which a number of stochastic texture features can be 

computed. To compute the co-occurrence matrix, the 

frequency of occurrence of a pixel with intensity i adjacent to 

a pixel with intensity j is generated for all elements (i,j) of the 

given square matrix. Then the normalized co-occurrence 

matrix is obtained by dividing all elements in the co-

occurrence matrix by the total number of frequency of 

occurrences. Due to the normalization, the sum of all elements 

in the co-occurrence matrix equals 1. There are 14 features [21] 

that can be extracted and are undoubtedly the most well-

known features used in many texture analysis methods in the 

medical domain. Table 1 shows the extracted texture features. 

 

Table 1. SOS-OCC system's performance measures 

 
No Features No Features 

1 Contrast 8 
Angular second 

Moment 

2 
Sum of Squares 

(Variance) 
9 Correlation 

3 Sum Average 10 
Inverse different 

moment 

4 Entropy 11 Sum Variance 

5 Difference Variance 12 Difference Entropy 

6 Sum Entropy 13 
Maximal Correlation 

Coefficient 

7 

Information 

Measures of 

Correlation-1 

14 

Information 

Measures of 

Correlation-2 

 

Before feature extraction, each component of HSV image is 

represented by SOS [22, 23]. From the obtained SOS sub-

bands, the stochastic texture features are extracted. The SOS 

is defined by 
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where,  𝑃𝑠𝑑  is the product of SOS operator and dilation 

matrices. They are defined in Eq. (8) and Eq. (9) respectively. 

 

1

2( )
1 1 2

1
( ) : ( , )

0 1

l
m

ml T
mr

r x
S x x x

−

=

 
 =
 
 
 


 (8) 

 

,

0
0 [0,1]

0
a

a
A where a and

a
 


 

=   
 

 (9) 

 

where, 𝛼 is the scaling factor and 𝛼 =
1

3
 is used to analyze the 

SOS for OCC. This scaling helps to identify the location and 

the direction of discontinuity curves. For frame construction, 

the decomposition system employs some form of anisotropy. 

The orientation and location of system elements are controlled 

by the constructed frames. Ridgelet transform uses 𝛼 = 0 , 

wavelet transforms use 𝛼 = 1 and the Curvelet and Shearlets 

use 𝛼 = 0.5. These values are not sufficient for separating 

different curvatures by the SOS that requires 0 < 𝛼 <
1

2
. The 

rates of decay vary depending on the circumstances, which in 

turn makes it possible to locate the boundaries. Using this 

scaling with 𝛼 =
1

3
, the decay rate of SOS offers more precise 

curvature and orientations of distinct areas in an image [23]. 

Figure 4 shows samples of 3rd level sub-bands of different 

representation systems. Features are extracted from each 

channel of the HSV colour space. From each sub-band, a total 

of 42 features are extracted per sample. 

 

 
 

Figure 4. Sub-bands at 3rd level decomposition (a) SOS (b) 

FOS (c) Contourlet (d) Curvelet (e) Wavelet 

 

2.3 Probabilistic classification 

 

The probabilistic classifiers compute the possibilities of 

samples that may fall into one or more classes. The Bayesian 

classifier performs better in many medical image classification 

systems than the probabilistic classifiers. Using the posterior 

probabilities, the Bayesian classifier classifies whether the 

sample belongs to normal or abnormal. Let us consider the test 

sample as s. The Bayesian classifier is defined by 
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1 2
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where,  𝑃(𝜔1|𝑠)  and 𝑃(𝜔2|𝑠)  denote the posterior 

probabilities of belonging to normal and abnormal 
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respectively. These probabilities can be obtained using 

Bayesian theorem and are given by:  
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Suppose the prior probability 𝑃(𝜔1) and 𝑃(𝜔2) are equal 

to each other. The Bayesian classifier in Eq. (9) can be yielded 

as: 
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Thus, the classification depends on the comparison between 

𝑃(𝑠|𝜔1) and 𝑃(𝑠|𝜔2). 

 

 

3. RESULTS AND DISCUSSIONS 

 

The power of texture to discriminate oral cancer patients 

from normal subjects is accessed from 1224 (290 normal and 

934 abnormal) histopathological images [24]. Figure 5 shows 

the histopathological images of normal and abnormal 

categories. As the resolutions of images in the databases are 

not equal, the resolution of images is set to 256×256 pixels 

after median filtering. In order to represent the images in SOS, 

Wavelet, Curve let, and Contourlet, a square-shaped resolution 

(256×256) is chosen. 

The commonly used model evaluation approaches are 

train/test split and k-fold cross-validation. Though they are 

very effective, they provide misleading results when used on 

an imbalanced database. As the database is imbalanced (290 

normal and 934 abnormal), stratified k-fold cross-validation is 

employed. It is an extension of the standard k-fold cross-

validation. The standard approach divides the dataset into k-

folds, but it does not ensure that each fold has the same number 

of images per category. In contrast to the standard approach, 

the stratified approach maintains the same number of images 

per category in each sub-set. In this approach, stratified 10-

fold cross-validation is employed. Thus, each fold has 29 

normal and 93 abnormal samples. The remaining four 

abnormal samples from 934 samples are added in the last four-

folds. The SOS-OCC system’s performance measures are 

shown in Table 2 and the confusion matrices obtained by the 

features are shown in Figure 6. In Figure 6, zero (0) represents 

the abnormal class and one (1) represents the normal class. 

It is inferred from Figure 6 that the SOS-OCC system 

performs significantly better than others, with an overall 

accuracy of 98.6%. The sensitivity and specificity of the SOS-

OCC system are 99.1% and 96.9%, respectively. The 

accuracies of other systems are 95.4% (Contourlet), 93% 

(Curvelet), and 90.4% (Wavelet). The obtained texture 

features from histopathological images contribute to 

significant performance improvement. Texture features from 

other transformations such as wavelet and contour let are 

insufficient to significantly discriminate the normal and 

abnormal tissues, thus their performances are less than the 

SOS based system. Figure 7 shows the OCC system's ROCs 

by different representation systems. In Figure 7, true positive 

rate is the positive prediction rate (sensitivity) of the system, 

whereas the false positive rate is the incorrect prediction of 

positive classes (1-specificity). 

The most striking feature of all ROCs is how they are very 

close to the y-axis. Based on this feature, the ROC curve is 

interpreted. The two ends of the curve correspond to situations 

in which all states are considered to be normal (specificity=0 

and sensitivity=1), or all states are considered to be 

pathological (specificity=1 and sensitivity=0), respectively. 

The points in the middle represent different degrees of 

decision making that are intermediate in nature. The ROC 

curve of a perfect observer, who never makes an incorrect 

diagnosis, will look like a step-by-step function, with axes that 

are labeled x=0 and y=1, whereas the ROC curve of a chance 

observer, who randomly diagnoses each case as normal or 

abnormal, will look like a straight line with a gradient of one 

that passes through the origin. If the ROC is located closer to 

the top left corner of the graph, then one observer is superior 

than the other (0.1 point). So, this provides a framework by 

which to compare the observations of many witnesses (in this 

case, automated techniques). The ROC curves for each 

observer may be derived, and then a comparison can be made 

by selecting (as the best observer) the curve that is located in 

the area of the graph that is most directly above the top left 

corner. 

As this curve is drawn between the sensitivity and 1-

specificity, the curve for the system very close to the y-axis is 

the best compared to others. Thus, the best system for OCC is 

in the order of SOS>FOS>Contourlet>Curvelet>Wavelet. All 

the performance measures shown in Figure 6 and Figure 7 are 

obtained by decomposing the histopathological images at 3-

level with 8-directions. Figure 8 shows the performance for 

other levels of decomposition. 

 

 
 

Figure 5. Sample histopathological images 

 

 

Table 2. SOS-OCC system's performance measures 

 
Sensitivity (%) Specificity (%) Overall Accuracy (%) 

True Positive (TP)

True Positive (TP) + False Negative (FN)
 

True Negative (TN)

False Positive (FP) + True Negative (TN)
 

TP + TN

TP +  FP + TN + FN
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Table 3. SOS-OCC system's performance for different validation approaches 
 

Techniques 
System Accuracy (%) 

Random Split (70:30) k-fold Cross Validation (k=10) stratified k-fold Cross Validation (k=10) 

Wavelet 84.5 86.8 90.4 

Curvelet 88.5 90 93.0 

Contourlet 90.8 92.6 95.4 

FOS 93 94.8 96.4 

SOS 95.7 96.5 98.6 
 

  
(a) Wavelet (b) Curvelet 

  
(c) Contourlet (d) FOS 

 
(e) SOS 

 

Figure 6. Confusion matrices of the OCC system using different representation systems 
 

It can be seen from Figure 8 that the features from the 3rd 

level of representation systems provide better results than the 

other levels. This is because low-level features cannot 

distinguish the patterns of normal and abnormal images. While 

increasing the level from 1 to 2 and then to 3, the system’s 

accuracy increases as more discriminating features are 

extracted. However, the system’s accuracy decreases due to 

the redundant data at higher levels [25]. Among the 

representation systems, the performance of Wavelet is poorer 

as it provides only three directional features such as diagonal, 

vertical and horizontal.  

Table 3 shows the performance of stratified k-fold cross-

validation approach with other validation approaches such as 

random split (70:30) and k-fold cross-validation in terms of 

accuracy using 3rd level features from each representation 

systems. It can be seen from Table 3 that the stratified k-fold 

cross-validation approach gives better results than other 

validation approaches. This is because the stratified k-fold 

cross-validation is better for imbalanced dataset. 
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Figure 7. OCC system's ROCs by different representation 

systems 

 

 
 

Figure 8. OCC system's performances for different levels 

 

 

4. CONCLUSIONS 

 

The texture changes in the histopathological images are 

significant in interpreting them to achieve high classification 

accuracy. In this work, an SOS based OCC system is designed 

using histopathological images. The texture differences 

between the abnormal and normal histopathological images 

are assessed using 1224 images obtained from oral cancer 

patients. The resulting 2nd order stochastic texture feature 

achieved a classification accuracy of 98.6% (Sensitivity 99.1% 

and specificity 96.9%) using a Bayesian classifier. The results 

proved that the SOS-OCC system might have applications in 

the early detection of oral cancer. The performance of the 

stochastic texture features is analyzed using different 

frequency domain representation systems such as Wavelet, 

Curvelet, Contourlet, FOS, and SOS. The obtained accuracies 

are 96.4% (FOS), 95.4% (Contourlet), 93% (Curvelet) and 

90.4% (Wavelet). In the future, the specificity of the SOS-

OCC system can be improved by using a balanced database 

while training and testing the classifier. 
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