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The rapid progression of diseases in the elderly, such as Alzheimer's Dementia (AD), 

necessitates effective early detection mechanisms to ensure appropriate healthcare 

provision. Given the consistently increasing prevalence of AD, the potential for emerging 

socio-economic challenges is significant. This underlines the importance of developing early 

detection strategies to mitigate the progression of this disease. Electroencephalograms 

(EEG) present a promising avenue for the early diagnosis of AD. EEG signals harbor crucial 

information pertaining to neuronal death triggered by amyloid plaque accumulation, a 

characteristic feature of AD. Spectral analysis reveals a deceleration in signal activity in AD 

patients when compared to healthy elderly individuals. However, this method is frequently 

compromised by low-frequency noise, necessitating the exploration of alternative 

approaches for analyzing EEG signal features for early AD detection. Considering the 

complex nature of EEG signals, it is hypothesized that pathological conditions, such as AD, 

may induce alterations in signal complexity. In this study, an early detection model for AD 

was simulated utilizing an approach that focused on EEG signal complexity. Complexity 

analysis, incorporating Spectral Entropy (SpecEn) and fractal dimensions, was calculated 

across 19 EEG channels from a total of 34 subjects (16 normal and 18 with Mild Cognitive 

Impairment (MCI)). Performance validation of the proposed method was achieved through 

Linear Discriminant Analysis (LDA), yielding an accuracy of 82.4%, specificity of 77.8%, 

and sensitivity of 87.5%. The findings from this study suggest that EEG analysis can serve 

as a reliable tool for the early detection of AD. 
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1. INTRODUCTION

Alzheimer's Dementia (AD), the most prevalent form of 

dementia globally, continues to experience a rise in its 

incidence [1]. This chronic, neurodegenerative condition, 

predominantly afflicting the elderly population, is marked by 

cognitive impairment and memory loss [2, 3]. Despite not 

being directly lethal, AD's rapid progression significantly 

diminishes quality of life. The disease often induces 

considerable dependence on others, impacting social life and 

imposing substantial costs [4]. 

As of present, no definitive treatment protocols for AD exist 

[5]. Delayed intervention can precipitate swift deterioration, 

underscoring the importance of early detection and subsequent 

treatment in curbing this potentially aggressive degenerative 

process [6]. The primary pathogenesis of AD is believed to be 

attributable to extensive neuronal death and neurotransmitter 

damage. The accumulation of beta-amyloid plaques is strongly 

implicated in the disruption of inter-neuronal information 

transmission [7]. 

Biochemical modalities and medical imaging serve as 

standard biomarkers in AD diagnosis [3]. Biochemical 

modalities such as cerebrospinal fluid (CSF) are sensitive to 

pathological changes due to AD [8, 9]. However, these 

medical modalities necessitate invasive procedures and find 

limited use in clinical practice. Medical imaging techniques, 

including MRI, CT-Scan, and FDG-PET [10, 11], whilst 

sensitive to AD, are costly and typically available only in 

central hospitals [3]. 

In light of neuronal degradation and brain electrical activity, 

electroencephalogram (EEG) offers an alternative in AD 

analysis, encompassing early detection and severity 

assessment [12]. EEG's advantages of being low-cost, non-

invasive, easily installed, and readily available in public health 

centers render it a preferred choice. EEG has long been relied 

upon as a primary biomarker or auxiliary tool in AD studies. 

Early detection of AD can occur well before the onset of pre-

clinical symptoms or at the stage of mild cognitive impairment 

(MCI). The neuronal damage or death pivotal to AD induces 

changes in EEG signal characteristics. Power spectral analysis 

of EEG reveals a slowdown of waves [13, 14], indicative of 

reduced alpha wave activity [15, 16]. Furthermore, coherence 

and synchronization analyses exhibit a decrease in AD 

compared to normal aging [17, 18]. 

While EEG spectral analysis has been employed to 

characterize AD and assess its severity, it is notably sensitive 

to noise, a common issue in EEG signal. Therefore, a 

supplementary method is required to bolster spectral-based 

analysis. Given that the EEG signal is a cumulative result of 

complex, dynamic processes by neuron cells, a signal 

complexity-based analysis is considered proficient in 

characterizing EEG. Consequently, this study proposes an 

early detection methodology for AD based on EEG signals 

utilizing a signal complexity approach. The study analyzed 

recorded EEG signals from normal elderly individuals and 

those with MCI. A complexity approach integrating Spectral 
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Entropy (SpecEn) and fractal dimension was deployed for 

EEG characterization. Linear discriminant analysis (LDA) 

was employed for evaluating the proposed method. This study 

aims to serve as a supportive and complementary method for 

AD early detection, supplementing spectral-based 

characterization. 

The ensuing sections of the paper are organized as follows: 

Section 2 outlines the EEG dataset and the methods employed 

in this study. Section 3 presents the study findings and 

subsequent discussions. Section 4 concludes the paper, 

delineating the implications of the study, its conclusions, and 

prospects for future work. 

 

 

2. MATERIAL AND RESEARCH METHODS 

 

2.1 System design 

 

Figure 1 shows our proposed system. First, EEG signals 

entered the pre-processing stage that included Independent 

Component Analysis (ICA) denoising and Band Pass Filter 

(BPF) from 1-30 Hz. ICA denoising was applied because it is 

superior in separating noise from signal in the raw dataset. Not 

only that, but ICA also improve the data quality [19]. Pre-

processing stage resulted filtered signals. Then, four different 

calculations were performed to extract the features, i.e., 

SpecEn, Katz, Higuchi, and Sevcik fractal dimension. In the 

final stage, the features were classified using LDA classifier. 

Each stage of the proposed system is briefly explained in the 

following subsections. 

 

2.2 Normal dan MCI EEG dataset 

 

This study used the scalp EEG dataset containing two 

conditions, namely normal and Mild Cognitive Impairment 

(MCI). There are 34 selected subjects (16 normal and 18 MCI) 

who were hospitalized in the units of cardiac catherization of 

Sina and Nour Hospitals located in Isfahan, Iran. In the current 

dataset, there are more EEG recordings than the previous 

release where there are 27 EEG recordings (16 normal and 11 

MCI). Patients’ age range is 60-77 with coronary angiography 

history in recent year. Patients with a track record of major 

psychiatric disorders, dementia, head trauma, substance 

misuse, and other serious medical disease were not included. 

However, all subjects had to complete the neuropsychiatric 

interview considering Peterson’s criteria for MCI. An 

assessment tool, neuropsychiatry unit cognitive (NUCOG), 

has been used in confirming the diagnosis of MCI [20]. 

The recording session for all EEG signals were done in the 

mornings while subjects were comfortably rested with closed 

eyes in a quiet room and using the same EEG amplification 

system. There are 19 channels (Fp1, Fp2, F7, F3, Fz, F4, F8, 

T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2) which 

represent 19 electrodes positioned corresponding to the 10-20 

international system. The sampling frequency is 256Hz when 

recording the EEG signal continuously. During the recording 

process, patients were being checked out repeatedly to keep 

them aware and awake [20]. The length of the recording was 

about 30 minutes. In this dataset, EEG signals are stored in the 

European Data Format (*.edf) as a standard for exchange and 

storage. 

 

2.3 Spectral entropy 

 

Generally, entropy is a measurement of signal complexity. 

As the complexity increases, the resulted entropy value is 

higher. There are various entropy calculations that have been 

used in lots of EEG signals complexity measurement [21-24]. 

In this study, we estimate the signal regularity using spectral 

entropy (SpecEn). SpecEn calculates the power spectral 

distribution of the Fourier transform using Shannon entropy. 

SpecEn estimates signal dynamics in the frequency domain. 

Meanwhile, entropy is a measure of the uncertainty of a data 

series. So that, high spectral entropy represents the high 

dynamics of the power spectral at a certain frequency range. 

While low SpecEn represents spectral power with low 

dynamics or condensed into a single frequency [24]. 

SpecEn represents the probabilities of power spectral 

densities using Shannon’s entropy equation. The spectral 

entropy is normalized according to the range of frequency 
[𝑓1, 𝑓2] with Eq. (1) below. 

 

𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 [𝑓1, 𝑓2] =

−
1

𝑙𝑜𝑔[𝑁[𝑓1,𝑓2]]
∑ 𝑃𝑛(𝑓𝑖) 𝑙𝑜𝑔(𝑃𝑛(𝑓𝑖))

𝑓2
𝑓𝑖=𝑓1   

(1) 

 

where, [𝑁[𝑓1, 𝑓2]] is the total components of frequency in 

range [𝑓1, 𝑓2]  and 𝑃𝑛(𝑓𝑖)  is the probabilities of the total 

components of frequency [25, 26]. 
 

2.4 Fractal Dimension 

 

One of the EEG characteristics is high complexity with self-

similar patterns. Fractal Dimension (FD) is a useful technique 

to handle the self-similar pattern complexity. Generally, FD 

measures the waveform complexity in time series analysis [27]. 

A few methods of FD have been developed to support the EEG 

signals classification [28-30]. This study proposes an AD early 

detection method utilizing Higuchi, Katz, and Sevcik FD to 

estimate the EEG waveform complexity 

 

2.4.1 Higuchi Fractal Dimension 

Higuchi Fractal Dimension (HFD) occurs in a time-series 

𝐴(𝑡)  to calculate the value of FD that represents the 

complexity of EEG waveform. A new time-series 𝐴(𝑡)𝑘
𝑚 and 

the length of the series are defined in Eqs. (2)-(3) [31]. 
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Figure 1. The proposed system 
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where, m = 1, 2, …, k is integer which state the time delay with 

the maximum interval time is 𝑘𝑚𝑎𝑥 , symbol of [. . . ] is the 

Gauss notation, and the term of (4) [32], specifies the factor of 

normalization at the length of FD. Then, the average length of 

the series is obtained using Eq. (5) below. 
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Then, if the results are plotted on a log-log graph, the HFD 

can be obtained from a slope of the linear regression plot 

between 𝑙𝑛( 𝐿(𝑘))  to 𝑙𝑛( 1/𝑘) . The obtained curve defines 

the HFD with D dimension after the value 𝐿(𝑘)𝛼𝑘−𝐷  is 

complied. 

 

2.4.2 Katz Fractal Dimension 

Katz Fractal Dimension (KFD) is a direct calculation from 

the time-series 𝐴(𝑡) that starts with its transpose array [33, 34]. 

When N is length of the curve, the measurement of KFD is 

written as Eq. (6) [35]. 

 

( )

( ) 

















=









+

=

a

d

a

L

L

d
n

n
D

log

log

loglog

log

 

(6) 

 

where, L represents the signal length, a defines average 

distance between the successive points, and n is the total of 

steps presented in the graphic of curve [32]. 

 

2.4.3 Sevcik Fractal Dimension 

A newer method to calculate the FD of a waveform in a 

quicker way is Sevcik Fractal Dimension (SFD) [36]. The 

waveform dimension, complexity, and randomness can be 

quickly estimated and measured since the calculation 

characteristics are simple and fast [37]. SFD approximates the 

FD D from the sampled time series of N dimension. Based on 

[36], the estimation of D is obtained from the Hausdorff 

Dimension 𝐷ℎ of a waveform by plotting the N points of curve 

L to cells of a unit square 𝑁 × 𝑁 in a metric space that has 

been normalized, through transformation of double linear. Eq. 

(7) defines the SFD calculation [35]. 

 
( )
( ) 1.2ln

ln
1

−
+=

N

L
Dh

 
(7) 

 

where, L is the length of a curve. 

 

2.5 Linear Discriminant Analysis 

 

Linear Discriminant Analysis (LDA) is a supervised 

classifier that creates a combination of the original predictors 

as its new variable [38, 39]. The target of LDA is to achieve a 

predictor value from the new variable which combines the 

actual class and the actual predictors [40]. LDA does the 

grouping process of the objects into groups which are mutually 

discriminative. If there are two classes in the EEG dataset, the 

used discriminant function will be one. The required training 

samples are fewer, yet the results are as good as the other 

classifiers [41]. The discriminant function can be written 

mathematically in Eq. (8) [38]. 

 


=

=
p

j

jj ZwD
1  

(8) 

 

where, w is the weight factor. 

 

 

3. EXPERIMENTAL SETUP 

 

Essential features are calculated using SpecEn, HFD, KFD, 

and SFD for each EEG channel. So that each channel will 

produce four features. These features then become predictors 

in the classification stage. The proposed method was validated 

using LDA. Seeing that the number of datasets is relatively 

small, the distribution of training and test data uses the cross 

validation (CV) method where 5-CV is used in this study. 

Several scenarios were simulated to observe which method 

generated the highest accuracy. The scenario includes 

grouping features by area, combining the resulting feature 

vectors from all feature extraction methods, and observing 

accuracy when applying one feature extraction method. The 

average of features calculated in each area includes frontal 

(Fp1, Fp2, F3, F4), right temporal (F8, T4, T4), left temporal 

(F7, T3, T5), central (C3, C4, Fz, Cz, Pz), and occipital (P3, 

P4, O1, O2) [20]. Table 1 shows the details of each scenario. 

 

Table 1. Scenarios used in simulation 

 
Scenario Classification Feature 

A Average area (SpecEn, HFD, KFD, SFD) 

B All channels (SpecEn, HFD, KFD, SFD) 

C SpecEn (Average area) 

D HFD (Average area) 

E KFD (Average area) 

F SFD (Average area) 

 

This study implements the measurement accuracy, 

specificity and sensitivity to validate the performance of the 

system which defined in Eqs. (9) (10) and (11), respectively. 

 

100
TP TN

Acc
TN FP TP FN

+
= 

+ + +
 (9) 

 

100
TN

Spec
TN FP

= 
+

 (10) 

 

100
TP

Sen
TP FN

= 
+

 (11) 

 

where, Acc is accuracy, Spec is specificity, Sen is sensitivity, 

TP is true positive, TN is true negative, FP is false positive, 

and FN is false negative. 

 

 

4. RESULTS AND DISCUSSION 

 

In this study, the duration of the EEG signal processed was 

five minutes, which was taken from the beginning of the 
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recording. This is indeed an assumption, to avoid EEG signals 

containing drowsiness as a consequence of a long recording. 

The EEG signal resulting from noise rejection by ICA and 

BPF is then calculated for its spectral entropy and fractal. 

Figure 2 and Figure 3 show the estimated signal complexity 

calculated using spectral entropy and fractal dimension. 

Figure 2 shows that the SpecEn value of the MCI group is 

lower than that of the normal group. With the T-Test 

(confidence level = 95%), significant differences were found 

at the electrodes Fp1, Fp2, T6 and O1. These results indicate 

that there is a decrease in the complexity of the EEG signal in 

MCI patients, particularly in the frontal and occipital areas. 

The same trend is also shown in Fig. 3 where the signal 

complexity of the MCI group is lower than the normal group. 

These characteristics will then be used for MCI and normal 

discrimination in the next stage. The results of the 

performance validation using LDA and 5-CV for each 

scenario are shown in Table 1. 

Table 2 shows that the highest accuracy is 82.4% with 

specificity and sensitivity 77.78% and 87.5%, respectively. 

The confusion matrix is presented in Table 3. The highest 

accuracy was obtained in scenario B, where all features from 

SpecEn and FDs are used. Meanwhile, if only one feature 

extraction method was applied (scenario C-F), the highest 

accuracy was achieved by the scenario F with an accuracy of 

76.5%. In scenario C, SpecEn generated the lowest accuracy 

among the other methods. This occurred because the SpecEn 

is very distorted to the natural noise of the EEG so that it 

delivered greater bias between normal and MCI than the 

fractal method. Additionally, SpecEn estimates the complexity 

of the signal based on spectral analysis, which is very 

vulnerable to the influence of noise. Scenario A was done by 

grouping of features based on brain area and the accuracy was 

70.6% which indicates lower than when all features were used 

as predictors, as in scenario B. 

The brain represents a complex process of resultant large 

amounts of neuronal activity. Pathological changes due to a 

disease can affect the electrical activity of neurons including 

changes in the degree of signal complexity. The decline in 

complex biological mechanisms can be an indicator of 

decreased ability to respond to stimuli. Decreased cognitive 

function in the elderly with AD occurs due to damage to 

neurons or neurotransmitters in the brain, causing disruption 

of communication between cells. This affects changes in the 

EEG signal and thus may underlie the early detection of AD 

proposed in this study. 

 

 
 

Figure 2. Mean of the SpecEn values of each electrode in the normal and MCI groups 

 

 
 

Figure 3. Mean of the KFD values of each electrode in the normal and MCI groups 
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Table 2. Accuracy, specificity, and sensitivity of each 

scenario 
 

Scenario 
Linear Discriminant 

Acc (%) Spec (%) Sen (%) 

A 70.6 68.75 72.22 

B 82.4 77.78 87.5 

C 55.9 53.33 57.89 

D 73.5 76.92 71.43 

E 70.6 71.43 70 

F 76.5 72.22 81.25 

 

Table 3. The confusion matrix of the highest accuracy 
 

 MCI Normal 

MCI 14 4 

Normal 2 14 

 

From all the simulated test scenarios, it is known that the 

highest accuracy was achieved by scenario B, which was the 

combination of all feature extraction methods. This study is 

superior to previous studies because in this study uses a larger 

amount of data. The proposed method in this study yielded a 

classification accuracy of > 80% and can be considered for 

early detection of AD in this case as a supplementary 

diagnostic criterion besides memory testing. From the low 

specificity values, it could be seen that it was very challenging 

to detect AD in the early stages since EEG MCI has similar 

characteristics to normal EEG signals. This happened because 

in the early stages of AD, neuronal damage only occurs in a 

partially human brain. But, an EEG analysis for early detection 

of AD can be considered a tool with several advantages that it 

is low-cost, non-invasive, and can be used continuously 

compared to medical imaging techniques. 

 

 

5. CONCLUSION 
 

People with AD tend to have particular changes of the brain 

waves that can be examined through EEG signals. To decide 

the most suitable treatment, the examination needs to be as 

accurate as possible. Meanwhile, the transformation from 

normal elderly to AD, and vice versa, is slightly different, so 

an automated diagnosis is indispensable. One of the 

characteristics of EEG signals is complex and dynamic. 

Therefore, this study proposed an early detection of AD based 

on EEG signals focusing on the signal complexity to 

distinguish the conditions defined in the EEG dataset used 

which are normal and MCI. SpecEn and FD were used as the 

methods for signal complexity-based approach. All features 

were classified using LDA to classify the normal and MCI 

conditions using six scenarios. The highest accuracy was 

performed by scenario B that employed features from all 

feature extraction methods in all areas. Obtaining accuracy 

more than 82.4% verifies that EEG is suitable for further 

analysis of AD detection. Furthermore, the specificity and 

sensitivity reached 77.8% and 87.5%, respectively, show that 

the proposed method is ready to support the early detection of 

AD in large population. However, detecting AD still faces 

many challenges seeing that only partial locations of brain that 

are affected by neuronal damage. 
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