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Cataracts, characterized by the opacification of the eye lens leading to visual deterioration, 

pose a significant global health issue. Timely and accurate detection of cataracts is pivotal 

for halting disease progression and augmenting the patients' quality of life. However, 

conventional diagnostic approaches for cataract detection and grading rely heavily on the 

expertise of ophthalmologists, a solution that can be unduly costly and inaccessible for 

certain population segments seeking early intervention. Addressing this challenge, the 

present study introduces a computer-assisted diagnostic strategy for the detection and 

grading of cataracts, drawing on fundus retinal images. The proposed approach capitalizes 

on a deep convolutional neural network to extract features from fundus images, which are 

subsequently evaluated via three distinct classification algorithms: Support Vector Machine, 

Naive Bayes, and Decision Tree. The resultant categorization stratifies the images into four 

severity levels: mild, moderate, normal, and severe. Further enhancing the classifier's 

prediction accuracy, an Ensemble (ES) learning mechanism via a Majority Voting Scheme 

(MVS) process is incorporated into the study. A total of 1600 fundus images, sourced from 

various open-access databases and classified into four categories by an expert 

ophthalmologist, were utilized for the study. The proposed methodology demonstrated a 

commendable accuracy rate of 97.34% in the four-stage cataract classification and grading, 

outperforming existing methodologies. This research advances the field by introducing a 

reliable, cost-effective, and accessible solution for early cataract detection, contributing 

significantly to global health improvements. 
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1. INTRODUCTION

Visual acuity, a fundamental aspect of human perception, is 

compromised for a significant proportion of the global 

population. As documented by the World Health Organization 

(WHO) in 2010, an estimated 285 million individuals globally 

suffer from some degree of visual impairment, with 39 million 

classified as completely blind and 246 million exhibiting 

moderate to severe visual impairments (MSVI) [1]. The 

International Agency for the Prevention of Blindness, in its 

2015 report, stated that out of a global population of 7.3 billion, 

252 million individuals had visual impairments, including 36 

million blind and 216 million with MSVI [2]. 

Figure 1. A comparative analysis of statistics on vision 

impairments from WHO (Years 2010 and 2015) 

This situation, as illustrated in Figure 1, has seen only 

marginal improvements over the last five years. In response, 

the WHO launched a global initiative, "VISION2020: The 

Right to Sight," aimed at addressing this issue [3]. However, a 

staggering 90% of the visually impaired population resides in 

developing nations, where access to adequate healthcare 

resources remains a challenge. Nevertheless, estimates suggest 

that 75% of visual impairments are preventable, equating to 

approximately four out of five cases that could be treated 

effectively [4]. 

In India, where nearly 8 million people suffer from 

blindness—largely concentrated in rural or underdeveloped 

regions—the prevalence of blindness is estimated at 1.1% [2, 

5]. Despite early initiatives to counteract blindness, challenges 

persist due to factors such as inadequate access to eye care, 

limited public health resources, lack of awareness, limited 

access to technology, and cultural attitudes. Figures 2(a) and 

2(b) highlight cataracts as a leading cause of visual 

impairments both globally and in India [6]. Cataracts, often 

resulting from factors like aging, obesity, radiation exposure, 

and diabetes, can be effectively managed through early 

detection and intervention. This underscores the need for a 

computer-based diagnostic system capable of accurate cataract 

assessment and categorization using non-invasive methods. 

The advent of fundus imaging has revolutionized eye health 

monitoring, thanks to the existence of non-mydriatic fundus 

cameras. These devices are user-friendly and produce high-

quality images that facilitate prompt detection and treatment 
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of eye conditions [7]. The introduction of portable fundus 

imaging devices and the transformation of smartphones into 

fundus cameras have stimulated research interest in fundus 

images and the development of cost-effective solutions for 

early eye disease diagnosis—especially in resource-limited 

rural areas [8]. However, the use of fundus images for cataract 

detection and grading poses several challenges, such as the 

need for manual feature extraction, limited and imbalanced 

datasets, and the requirement of expert ophthalmologists to 

determine the accuracy of retinal image diagnoses. 

(a)         (b) 

Figure 2. Statistics on causes of blindness (a) worldwide (b) 

India 

Recently, deep learning has emerged as a prominent area of 

research in the domains of image processing and computer 

vision and the use of deep convolutional neural networks (D-

CNNs) as deep neural networks for analyzing images is 

widespread. Unlike traditional methods, D-CNNs do not 

require human intervention and can automatically identify 

patterns and features in images. This has made them popular 

for disease diagnosis, where medical images are processed by 

D-CNNs to extract features, which are then used by a classifier

for disease detection and severity classification. However, it

has been observed that different classifiers can lead to varying

classification results and may not be effective in all cases. The

technique of ensemble (ES) learning is employed, which

involves the integration of several classifiers to produce a

more accurate classifier. This also helps to mitigate overfitting

in D-CNNs by reducing dependence on a single model and

taking into account the predictions of multiple models.

Given aforementioned discussion, this study endeavors to 

create an automated system for detecting and categorizing 

cataracts in fundus images. A collection of fundus images 

exhibiting varying levels of cataracts was obtained from 

multiple public datasets and categorized into four groups 

(normal, mild, moderate, and severe) by professional 

ophthalmologists, as depicted in Figure 3. The proposed 

method uses a hybrid approach that combines the capabilities 

of a Convolutional Neural Network (CNN) for extracting 

features from the fundus images and ES learning to merge 

three classifiers: Support Vector Machine (SVM), Naive 

Bayes (NB), and Decision Tree (DT). The majority voting 

scheme (MVS) is used to weigh the predictions of these three 

classifiers, resulting in a more accurate classifier. The 

performance of the proposed method was evaluated using 

several evaluation metrics, including accuracy, precision, 

specificity, recall, F1 score, and the AUC. The outcomes of 

this study will contribute to the creation of an effective and 

non-invasive computer-aided diagnosis system for the early 

detection of cataracts. 

Figure 3. Classification of fundus images based on cataract’s 

severity (a) normal (b) mild (c) moderate (d) severe 

This study is a pioneering effort in the field of cataract 

diagnosis using fundus images. The research aimed to develop 

an efficient and non-invasive computer-aided diagnosis 

system for the early detection of cataracts. The novelty of this 

study lies in its two-fold approach. First, the custom designed 

CNN model has fewer layers, smaller parameters, and smaller-

sized kernels, which reduces the computational cost 

significantly. Second, the EL method, which uses MVS on the 

predictions of three classifiers, namely SVM, NB, and DT, is 

applied to improve the robustness and reliability of the 

diagnosis system. 

The major contributions of this study are as follows: 

1. To design a custom CNN model that reduces the

computational cost, making it more accessible for practical 

applications. 

2. To use ES learning approach that combines the

predictions of three classifiers (SVM, NB, and DT), leading to 

a more accurate diagnosis. 

3. To use preprocessing steps, such as G-filtering, resizing,

and normalization, are applied to enhance the quality of the 

fundus images. 

4. To evaluate the performance based on accuracy, precision,

specificity, recall, F1 score, and AUC to demonstrate its 

efficiency. 

This study will contribute significantly to the development 

of an efficient and non-invasive computer-aided diagnosis 

system for the early detection of cataracts, which will have a 

positive impact on patient care, especially in rural areas where 

access to medical facilities is limited. 

The remaining paper is structured as follows: Section 2 

presents a review of previous studies in the field. In Section 3, 

the methodology and materials of the proposed approach are 

explained, including the formation of a fundus image dataset, 

data augmentation and pre-processing, extraction of features 

using the CNN model, and classification through the ES 

learning of three classifiers using MVS. The experimental 

results and evaluations are discussed in Sections 4 and 5, 

respectively. Finally, Section 6 concludes the paper. 

2. LITERATURE REVIEW

The process of detecting and grading cataracts from retinal 

images is a common area of focus in the medical imaging 

industry and typically follows a three-steps: pre-processing, 

extraction of relevant features, and final classification as 

depicted in Figure 4. The first step, preprocessing, enhances 

the clarity of the fundus images through techniques such as 

resizing, G-filtering, and normalization. Since fundus images 

obtained from various sources are of varying sizes, the resizing 

stage standardizes them to a uniform size, making them 

suitable for further processing by a CNN. G-filtering involves 

extracting the G-Channel from the RGB fundus images, which 
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helps eliminate variations in illumination. The G-Channel 

images retain crucial features of the original images and are 

clearer than the other channels. Second, the feature extraction 

step can be performed using either manual or automatic 

methods. Last, the classification step uses the extracted 

features to determine the presence and severity of cataracts.  

Figure 4. Major steps of cataract identification and 

classification systems 

The literature review is separated into two distinct parts 

based on the method of feature extraction: (1) manual cataract 

detection using traditional techniques, and (2) automatic 

cataract detection using deep learning. In the first section, 

image processing is utilized to extract hand-crafted features 

which are then used to classify cataracts through the 

application of conventional machine learning algorithms. The 

second section focuses on the use of deep learning algorithms 

to automatically identify features in fundus images, which are 

then utilized for training and evaluating machine learning 

classifiers for cataract classification. 

2.1 Cataract detection using conventional method 

Conventional methods involve utilizing image processing 

techniques to extract hand-crafted features and then 

classifying cataracts using conventional machine learning 

algorithms. Recently many researchers worked with 

conventional methods, the work of some of them are discussed 

below: 

Guo et al. [9] used wavelet transform and sketch-based 

features to develop and evaluate multiclass discriminant 

analysis algorithms for identifying and categorizing cataracts 

from fundus images. Their results shows that the accuracy for 

the wavelet transform-based features is 90.9% for two-class 

classification and 77.1% for four-class classification, while the 

accuracy for sketch-based features is 86.1% for two-class and 

74.0% for four-class classification. 

Cao et al. [10] employed the improved Haar-Wavelet 

transform to identify suitable features for cataract grading. The 

approach involved breaking down the four-class classification 

challenge into three separate two-class classifications through 

a hierarchical methodology, and subsequently training neural 

network-based classifiers on each of these two-class problems. 

The final 4-class classification result is obtained by combining 

the outcomes from all the 2-class classifiers, resulting in a 2-

class accuracy of 94.83% and 4-class accuracy of 85.98%. 

Yang et al. [11] developed a method that involved an 

improved Top-bottom hat transformation to increase contrast 

and a trilateral filter to decrease noise. The luminance and 

texture of the images are extracted as features for classification, 

and a backpropagation neural network (BPN) is employed to 

identify cataracts using these features. The accuracy of this 

classification approach is found to be 82.9%. 

Yang et al. [12] proposed a cataract detection and grading 

system that combines multiple machine learning algorithms. 

The system obtains a wide range of features from fundus 

images, such as wavelet, sketch, and texture-based features. 

An ES of a BPN and SVM classifiers are used to make 

predictions, and the final results are determined through MVS 

and stacking. The system achieved an accuracy of 93.2% for 

cataract detection and 84.4% for cataract grading. 

Zheng et al. [13] proposed a method for classifying cataracts 

using 2-D DFT spectrograms of fundus images as 

classification features. To reduce the dimensionality of the 

feature vectors, the method employs principal component 

analysis (PCA) and trains and evaluates the LDA classifier 

using the Adaboost algorithm. The method achieved a two-

class classification accuracy of 95.22% and a four-class 

classification accuracy of 81.52%. 

Fan et al. [14] presented a method utilizing PCA for 

reducing the feature dimensionality of fundus images obtained 

through wavelet and sketch-based techniques. The aim of this 

technique is to minimize computational demands while 

employing commonly utilized classification algorithms, such 

as SVMs, Bagging, DT, Gradient Boosting, and Random 

Forests (RF) to categorize cataracts. 

Song et al. [15] introduced a technique for cataract 

classification that incorporates an advanced semi-supervised 

learning approach to obtain additional information from 

unlabeled fundus images of cataracts, along with the standard 

three image features of texture, wavelets, and sketches. This 

system integrates multiple binary classifiers into a robust 

multi-classifier, yielding an accuracy of 88.60% for a 4-class 

categorization. 

Pratap and Kokil [16] investigated a system for cataract 

detection that employs SVD (singular value decomposition) 

for feature extraction from fundus images and utilizes a SVM 

as a classifier. The evaluation of this approach revealed a 2-

class classification accuracy of 97.78%. 

Nur et al. [17] proposed a technique that leverages the Gray 

Level Co-occurrence Matrix (GLCM) to extract features of 

contrast, correlation, energy, and homogeneity from fundus 

images and uses the k-Nearest Neighbors (k-NN) classifier to 

identify cataracts. The highest accuracy attained by this 

method is 80% when k was set to 5. 

It can be observed from the preceding discussion that both 

Slit-lamp and conventional hand-crafted feature-based 

methods for automatic cataract detection have certain 

shortcomings: 

1. The conventional methods require manual extraction and

selection of features, which is a time-consuming process that 

requires the assistance of ophthalmologists at every stage of 

cataract detection. 

2. The cost of hand-crafted methods is high, and their

accuracy is low, limiting their ability to detect only certain 

types of cataracts. 

3. Conventional methods also require a significant amount

of time to train the system, as they rely on human help for 
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feature extraction, making it difficult to identify finer details 

clearly for cataract classifications. 

2.2 Cataract detection using deep learning methods 

The utilization of deep learning has demonstrated its 

capability to automatically extract features and overcome 

limitations in the field of cataract classification and grading. A 

number of researchers have devoted significant efforts to the 

development of deep learning models for this purpose, with 

some of their works being presented in the literature. 

Zhang et al. [18] introduced an 8-layer Deep D-CNN to 

assess its performance and efficiency in automatic cataract 

detection and classification. The D-CNN consisted of five 

convolutional layers followed by three fully connected layers, 

with the output of the last fully connected layer being used as 

input for a softmax classifier that produces a distribution 

across four classes. The highest accuracy achieved by the 

proposed method is 93.52% for cataract detection and 86.69% 

for cataract grading. 

Ran et al. [19] developed an approach for six-level cataract 

grading using a combination of D-CNN and Random Forests 

(RF). The DCNN is comprised of three modules for feature 

extraction at different levels on fundus images, while the RF 

algorithm performs more precise six-level cataract grading 

based on the features extracted by the DCNN. The proposed 

method demonstrates an average accuracy of 90.69% for the 

six-level cataract grading task.  

Li et al. [20] introduced a technique that combined deep 

learning with ResNet-10 and ResNet-50 to train on 7030 

images. The ResNet-50 approach is complex due to its deep 

layers and large volume of data. The technique achieved 

97.25% accuracy for cataract detection through two-level 

image classification and 87.7% accuracy for cataract grading. 

Imran et al. [21] presented a method that uses a combination 

of Self-Organizing Maps (SOM) and Radial Basis Function 

(RBF) neural networks for automatic cataract detection and 

grading. The SOM algorithm is utilized to derive initial 

centers, which are then fed as inputs to the RBF network for 

cataract classification and grading. This method achieved 

95.3% accuracy for cataract detection and 91.7% accuracy for 

cataract classification into four classes. 

Syarifah et al. [22] improved the performance of the Deep 

CNN (DCNN) by utilizing a pre-trained CNN architecture 

known as AlexNet with a lookahead optimizer on SGD and 

Adam. This method has a two-class classification accuracy of 

97.5%. However, the approach faced challenges due to the 

small size of the dataset used. 

Junayed et al. [23] presented CataractNet, a novel 

convolutional neural network architecture characterized by a 

reduced number of layers, lower training parameters, and 

compact kernel sizes. This design strategy aimed to decrease 

computational time and expense while retaining high accuracy 

in cataract classification, achieving an accuracy rate of 

99.13%. 

Pratap and Kokil [24] introduced a method for classifying 

cataracts into four distinct grades by utilizing transfer learning 

with a pre-trained AlexNet and an SVM classifier. The 

approach involved the use of image quality selection 

parameters to evaluate the quality of fundus images sourced 

from open datasets. The method demonstrated a high level of 

accuracy, with a 92.9% success rate in categorizing cataracts 

into the four classes. 

Hasan et al. [25] assessed the capability of four pre-trained 

CNN models: InceptionResNetV2, Xception, InceptionV3, 

and DenseNet121, in diagnosing cataracts from retinal images. 

The results showed that among these models, 

InceptionResNetV2 exhibited the highest level of accuracy in 

two-class classification, with a score of 98.17%. 

Weni et al. [26] conducted research on a CNN-based 

approach for cataract detection, with a goal to enhance 

diagnostic accuracy while mitigating loss. The method 

achieved a classification accuracy of 95% after conducting 50 

epochs. 

Simanjuntak et al. [27] carried out an investigation to 

compare the effectiveness of four CNN architectures, 

specifically MobileNet, ResNet, GoogLeNet, and a custom 

CNN model, in classifying cataracts using fundus images. The 

results indicated that the proposed CNN model exhibited the 

highest level of accuracy and stability with a score of 92%, 

followed by MobileNet at 92%, ResNet at 93%, and 

GoogLeNet at 86%. 

Imran et al. [28] presented a hybrid approach combining 

deep learning models (AlexNet, ResNet, VGGNet with 

transfer learning) and a SVM classifier for categorizing 

cataracts into four classes. The proposed architecture achieved 

an accuracy of 95.65% by utilizing robust feature extraction 

and classification techniques. 

Yadav and Yadav [29] introduced a hybrid system that 

utilized transfer learning for feature extraction from fundus 

images. The method employed pre-trained CNN models 

(AlexNet, ResNet, and VGGNet) and an ES of SVM 

classifiers to grade cataracts into four categories. The system 

achieved an accuracy of 96.25% in four-class classification. 

It is observed from the above discussion that the efficiency 

of deep learning approaches in automatic cataract diagnosis 

and classification has been established as a more efficient 

alternative to traditional image processing methods. 

Therefore, this study uses a compact CNN model with an ES 

of three classifiers namely SVM, NB, DT to classify cataract 

into four classes (mild, moderate, no, and severe). The 

advantage of using this architecture is that it can improve the 

performance of the classification task. The compact 

representation of CNN model reduces the computation cost by 

using small kernels, lesser trainable parameters and layers. In 

addition to this, an ES approach utilized multiple individual 

classifiers to produce predictions that are combined to attain 

improved accuracy. SVM, NB, and DT are different types of 

classifiers that have different strengths and weaknesses, and 

combining their predictions can help to mitigate these 

limitations. For example, SVM may be good at handling high 

dimensional data and non-linear boundaries, while NB may 

perform better on large datasets. The DT classifier may be 

better suited for complex relationships and interactions 

between features. By combining the predictions of these 

classifiers, the resulting ES approach leverages the strengths 

of individual classifiers, and produce a more robust result. 
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Figure 5. A framework of proposed methodology that uses CNN as feature extractor and an es of classifiers 

Table 1. The comprehensive description of various datasets of fundus images 

S. No. Dataset Name Dataset Size Image Size (Pixels) 

1 HRF (High-Resolution Fundus) [30] 45 images 3304×2336 

2 STARE (Structured Analysis of the Retina) [31] 397 images 700×605 

3 MESSIDOR [32] 1200 images (three sets) 

Set 1: 1440×960 

Set 2: 2240×1488 

Set 3: 2304×1536 

4 DRIVE (Digital Retinal Images for Vessel Extraction) [33] 40 images (two sets) 565×584 (both sets) 

5 DRIONS-DB [34] 110 images 600×400 

6 IDRiD (Indian diabetic retinopathy image dataset) [35] 516 images 4288×2848 

3. PROPOSED METHODOLOGY

The following section outlines the systematic approach for 

identifying and assessing the severity of cataracts. The 

approach encompasses various crucial stages, such as dataset 

creation, preprocessing and dataset augmentation, feature 

extraction, and classification. The methodology is depicted in 

Figure 5 and is explained thoroughly in the subsequent 

subsections. 

3.1 Dataset creation 

In the first stage, a dataset of fundus cataract images is 

assembled from various databases and open-source datasets 

that are freely accessible on the internet due to the scarcity of 

benchmark datasets. This study utilized images that are 

randomly selected from the HRF [30], STARE [31], 

MESSIDOR [32], DRIVE [33], DRIONS_DB [34], and 

IDRiD [35] databases, as well as other images collected from 

the internet, as depicted in Table 1. A total of 1600 fundus 

images are compiled, with each class containing 400 images, 

as outlined in Table 2. 

Table 2. A full description of acquired fundus images 

S. No. Category Total Fundus Images

1. Mild 400 

2. Moderate 400 

3. No 400 

4. Severe 400 

Total 1600 

3.2 Preprocessing and data augmentation 

The preprocessing of fundus images is performed to 

enhance their generalization abilities. The preprocessing steps 

involved resizing, extraction of the G-channel, normalization, 

and data augmentation. The resizing is done using bicubic 

interpolation to make the images appropriate for further 

processing. The extraction of the green component from the 

RGB image through the G-channel extraction method is used 

to address the issue of uneven illumination. The G-channel is 

discovered to offer clearer insights into the illuminance and 

preserve crucial features of the original images (see Figure 6). 

Furthermore, working with the G-channel resulted in a 

decrease of one-third in computation time. Thirdly, 

normalization is used to standardize the intensity values of the 

images. It is accomplished by subtracting the mean of each 

pixel and dividing the result by the standard deviation. Finally, 

Data augmentation is a technique used to increase the size of 

the dataset by generating new samples from existing ones. 

This can help to prevent overfitting and improve 

generalization performance. Major data augmentation steps, 

including rotation (0°, 45°, 90°, 135°, 180°), flipping 

(horizontal), cropping (corner), and shifting (within a specified 

reference frame), are applied to the G-channel images. Figure 

7 demonstrates the resultant pre-processed images after 

applying these basic operations. 

Figure 6. (a) RGB image (b) R-channel (b) G-channel (d) B-

channel 

Figure 7. The resultant fundus images after the pre-

processing steps (a) Resized image (b) G-channel of image 

(c) Normalized Image (d) images after augmentation
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3.3 Feature extraction 

 

Feature extraction is a crucial aspect of CAD systems and 

greatly influences the classification accuracy. The use of CNN 

models in medical image diagnosis has gained widespread 

recognition. CNNs are deep neural networks designed to 

automatically identify intricate features in medical images and 

diagnose medical conditions. A typical CNN comprises four 

main layers: convolution (CL), pooling (PL), fully connected 

(FC), and classification layers (CS). The layers are 

interconnected, with the output from one layer serving as input 

for the next. This output is known as a feature map. The CL 

layer is accountable for extracting both low-level and high-

level features from fundus images using linear filters, 

including shapes like edges, curves, dots, corners, squares, 

circles, and others. The output from the 3×3 convolution filter 

is represented by Eq. (1).  

 

𝑓(𝑙, 𝑚, 𝑛) = ∑ ∑ ∑ 𝑤(𝑙, 𝑖, 𝑗, 𝑘)𝐼(𝑖 + 𝑚 − 1, 𝑗

3

𝑗=1

3

𝑖=1

3

𝑘=1

+ 𝑛 − 1, 𝑘) + 𝑏(𝑙) 

(1) 

 

where, I(i,j,k) is the image intensity value, w(l,i,j,k) represents 

weights, and b(l) represents the bias of the convolutional layer. 

The PL layer reduces the dimensions of the activation maps, 

which is the number of parameters in the network, through 

subsampling. This enhances the stability of the extracted 

features. The PL layer can be implemented using two methods: 

(1) Average pooling (AP), which determines the average pixel 

value in the masked region using a collection of linear filters 

and (2) Max-pooling (MP), which involves using a set of 

nonlinear filters to sort the pixel values in a specified region of 

the input image, and selecting the pixel with the highest 

absolute value as the result. The maximum-pooling layer for a 

2×2 grid is described in Eq. (2). 

 

𝑥(𝑙, 𝑚 + 1, 𝑛 + 1) 

𝑚𝑎𝑥 [
𝑓(𝑙, 2𝑚 + 1, 2𝑛 + 1) 𝑓(𝑙, 2𝑚 + 1, 2𝑛 + 2)
𝑓(𝑙, 2𝑚 + 2, 2𝑛 + 1) 𝑓(𝑙, 2𝑚 + 2, 2𝑛 + 2)

] 
(2) 

 

where, x(l,m,n) represents the maximum pixel value among its 

4-neighbors in the activation map (f). 

The batch normalization (BN) layer plays a crucial role in 

normalizing the output from the previous layer of the network 

during the training process. This helps to improve the learning 

speed and prevent overfitting, allowing for more efficient 

network learning. Additionally, the BN layer enables other 

layers in the network to learn independently. 

The FC layer is composed of neurons that are connected to 

all the neurons in the previous layer, which represents the 

activation maps. The main function of the FC layer is to 

produce a condensed representation of the entire input image. 

Usually, the outputs from previous FC layers and CL layers 

are processed through a ReLU activation function, which is 

defined in Eq. (3). 

 

𝑦 = {
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0

 (3) 

 

where, x represents the input to the ReLU function and y 

represents the resulting output produced by the ReLU function. 

However, the utilization of the softmax activation function is 

carried out at the end of the CNN to calculate the probability 

distribution of each output from the final fully connected layer, 

as expressed in Eq. (4). 

 

𝑣𝑖 =
𝑒𝑢𝑖

∑ 𝑒𝑢𝑛𝑁
𝑛=1

 (4) 

 

where, 𝑢𝑖 is the ith output from the last fully connected layer, 

𝑣𝑖 is the corresponding softmax activation, and N represents 

the total number of classes.  

The cross-entropy loss function is used to measure the 

difference between the predicted outputs of the softmax 

activation and the actual outputs. This is represented by Eq. 

(5). 

 

𝑒 = − ∑ 𝑣𝑗̂

𝑁

𝑗=1

log 𝑣𝑗 (5) 

 

where, 𝑣𝑗 represents the actual probability of the jth output of 

the last fully connected layer belonging to a specific class. The 

cross-entropy loss is minimized through backpropagation, 

using optimization techniques such as Stochastic Gradient 

Descent (SGD) and Active Design and Analysis Modeling 

(ADAM), to adjust the parameters of the model and improve 

image classification performance. 

 

 
 

Figure 8. Block diagram of proposed CNN network 

 

In this study, a CNN architecture is proposed for automatic 

detection and grading of cataracts into four stages (normal, 

mild, moderate, and severe) from fundus images. The 

architecture consists of six consecutive CL layers with 2×2 

ML layers in between them as shown in Figure 8. The 

convolutional layers use 32, 64, 64, 128,128 and 256 filters 

with 3×3 kernel size and 'same' padding. The max pooling 

layers reduce the size of the data representation and lower the 

number of trainable parameters. The outputs of the CL layers 

are combined into a feature map, which is used to feed several 

fully connected layers. These layers classify cataracts using 

three sets of FL layers and dropout (DO) layers. The FL layers 

contain 64, 128, and 256 neurons, while the dropout layers are 

set to 0.4, 0.4, and 0.5 to reduce the risk of overfitting. The last 

FL layer has four neurons for nonlinear classification. The 

activation function used in all layers is ReLU, except in the CS 
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layer, where the softmax function is used. The architecture of 

the proposed CNN model is detailed in Table 3. 

This study uses this CNN model for feature extraction by 

removing the last three layers of the CNN model, including the 

last FC layer, the DO layer, and the CS layer. Now, this model 

is utilized for feature extraction and an ES of SVM, NB and 

RF classifiers is adopting for classification of the cataract.  

Table 3. Detailed description of various layers of proposed 

CNN network 

Layers Filters Configuration Stride Output 

CL2D 32 
KS: 3×3, 

ReLU 
- 256×256×32

MP2D - KS: 2×2 2 128×128×32

CL2D 64 
KS: 3×3,

ReLU 
- 128×128×64

MP2D - KS: 2×2 2 64×64×64

CL2D 64 
KS: 3×3,

ReLU 
- 64×64×64

MP2D - KS: 2×2 2 32×32×64

CL2D 128 
KS: 3×3,

ReLU 
- 32×32×128

MP2D - KS: 2×2 2 16×16×128

CL2D 128 
KS: 3×3,

ReLU 
- 16×16×128

MP2D - KS: 2×2 2 8×8×128

CL2D 256 
KS: 3×3,

ReLU 
- 8×8×256

MP2D - KS: 2×2 2 4×4×256

FC - 64; ReLU - 64

DO - 0.4 64

FC - 128; ReLU - 128

DO - 0.4 - 128

FC - 256; ReLU - 256

DO - 0.4 - 256

FC - 4 - 4

Softmax - Softmax - 4

Class 

Layer 
- Output - - 

3.4 Classification 

This study utilizes three distinct classifiers, including SVM, 

NB, and DT, to evaluate the degree of cataracts present in 

fundus images. To provide further insight, let's delve into each 

classifier in more detail. 

SVM is a supervised learning algorithm that is used for 

binary classification. It aims to find a hyperplane with the 

maximum margin between the positive and negative classes, 

which helps to avoid misclassifications [36]. ECOC SVM is a 

variation of SVM used for multi-class classification problems. 

In ECOC, multiple binary classifiers are trained, each 

designed to separate two classes, and the outputs of these 

classifiers are combined in a codeword matrix. The final 

classification decision is made based on the maximum votes 

received by a class in the matrix, making ECOC a powerful 

method for multi-class classification that can handle non-

separable data and is less prone to overfitting [37].  

The Naive Bayes method is a statistical approach utilized 

for both binary and multi-class categorization [38]. This 

algorithm relies on Bayes' Theorem, which posits that the 

probability of a class being present given certain features is 

proportional to the prior probability of the class and the 

likelihood of the features appearing with the class. The term 

"Naive" is added as the algorithm assumes that the features are 

conditionally independent given the class. One variation of the 

Naive Bayes algorithm is the Gaussian Naive Bayes, which is 

specifically created for continuous data. It models the 

likelihood of the features given the class using a Gaussian 

distribution, with the mean and variance calculated from the 

training data [39]. This simple approach is commonly used in 

image classification. 

The Decision Tree algorithm was first proposed by Quinlan 

in 1986 and is a tree-based classification technique [40]. It 

begins by evaluating all the features at the root, and similar 

features are grouped together and represented as nodes. This 

method is recursive, meaning that these nodes are further 

divided into sub-nodes representing similar features, until 

division is no longer possible. The classes are represented as 

the leaves of the tree. The Decision Tree algorithm is simple 

to comprehend and interpret, efficient to run, and has proven 

to be effective for image classification [41]. However, it has 

the potential for overfitting, where overly complex trees are 

created that do not generalize the data well. 

Figure 9. The detailed diagram of proposed methodology of cataract detection and grading 
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It has been observed that various classifiers can produce 

differing outcomes when applied to the same set of features, 

and may not perform optimally in all situations. This is 

because each classifier possesses its own advantages and 

disadvantages and may be more suitable for specific types of 

data and applications. Therefore, the concept of ES learning 

involves combining several individual classifiers to produce a 

new, more accurate classifier. The goal is to harness the 

strengths of each classifier while mitigating its weaknesses, 

ultimately leading to improved performance and a higher 

degree of accuracy. 

In this study, a combination of three classifiers, SVM, NB, 

and DT, is utilized to make predictions. These classifiers are 

trained using features obtained from a custom CNN. The ES 

classifier employed a MVS during testing where each 

classifier made a prediction for every test image. The final 

prediction is based on the majority of classifier votes. If all 

classifiers have different predictions, the result of the SVM 

classifier is utilized as the final outcome. 

The steps involved in the methodology are illustrated in 

Figure 9 and can be concisely described as follows: 

•First, the CNN model is trained and validated using the pre-

processed and augmented fundus images dataset.  

•After proper training, the last three layers of the CNN 

model are removed to generate feature vectors. 

•The feature vectors corresponding to the training dataset 

are then used to train the classifiers. 

•Once trained, these classifiers are ready to predict the 

classes of the test dataset. 

•The MVS is applied to determine the class label of each 

test feature vector by considering the predictions of the SVM, 

NB, and DT classifiers. 

 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

 

In this section, the results and discussions of the proposed 

method's implementation on fundus image dataset are 

presented. The experiments are conducted on a personal 

computer with top-notch specifications including an Intel 7th 

Generation Core i7-7700 processor, 64-bit Windows 10 

operating system, 32GB of RAM and 4GB NVIDIA GTX 

1050 Ti graphics card. The proposed method's simulations are 

carried out utilizing the MATLAB R2019a software, a 

comprehensive platform that incorporates image processing, 

deep learning, and machine learning toolboxes. 

 

4.1 Evaluation metrics 

 

In this study, a collected fundus images dataset is used to 

train and test a method. The performance of the method is then 

evaluated using several performance metrics: accuracy, 

precision, sensitivity (or recall), specificity, and F1-score. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐴𝐶𝐶) =
𝑇. 𝑃. +𝑇. 𝑁.

𝑇. 𝑁. +𝑇. 𝑃. +𝐹. 𝑁. +𝐹. 𝑃.
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑆𝐸𝑁) =
𝑇. 𝑃.

𝑇. 𝑃. +𝐹. 𝑁.
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝑆𝑃𝐸) =
𝑇. 𝑁.

𝑇. 𝑁. +𝐹. 𝑃.
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃𝑅𝐸) =
𝑇. 𝑃.

𝑇. 𝑃. +𝐹. 𝑃.
 

𝐹1 𝑠𝑐𝑜𝑟𝑒(𝐹1) = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 

Accuracy is a metric that quantifies the number of accurate 

predictions made by a model. Precision assesses the ratio of 

true positive predictions to all positive predictions made by the 

model, while sensitivity (recall) evaluates the proportion of 

actual positive instances that were correctly identified by the 

model. In the medical field, precision and recall are deemed as 

the two crucial evaluation metrics. The F1-Score combines 

precision and recall through the harmonic mean and represents 

the balance between precision and recall. A F1-Score that is 

high signifies a good balance between precision and recall. In 

the field of medical diagnosis, avoiding false negatives 

(incorrectly reporting that a patient does not have a condition 

when they actually do) is of utmost importance, thus recall is 

prioritized over precision (correctly identifying patients who 

have the condition). False negatives could result in serious 

consequences for the patient, whereas false positives 

(incorrectly reporting that a patient has a condition when they 

do not) can be resolved through additional testing. Therefore, 

this study takes into account a comprehensive set of 

performance evaluation metrics, including accuracy, precision, 

recall, specificity, F1-score, and AUC, in order to assess the 

effectiveness of the diagnostic process. 

 

4.2 Performance evaluation 

 

In this study, the efficiency of the proposed methodology is 

evaluated by comparing its feature extraction and 

classification capabilities. It is observed that, as there are no 

benchmark datasets available for comparison, all the 

algorithms are trained and evaluated using a self-collected 

dataset. 

In this study, the performance of the proposed method is 

evaluated based on feature extraction using pre-trained CNN 

architectures such as AlexNet-Softmax, VGGNet-Softmax, 

ResNet-softmax, AlexNet-SVM, VGGNet-SVM, and ResNet-

SVM. The results, displayed in Table 4, indicate that the 

proposed method outperformed the other models evaluated. 

The proposed method demonstrated exceptional results, with 

a high accuracy score of 97.34%, sensitivity of 95.63%, 

specificity of 97.92%, precision of 93.87%, and F1-score of 

94.74%. These results show that the proposed method exhibits 

remarkable performance compared to other algorithms. 

 

Table 4. Performance comparison between the proposed 

methodology and pre-existing CNN models 

 
Methods ACC PRE SEN SPE F1 

AlexNet - softmax 91.32 92.05 91.22 91.44 91.63 

ResNet - softmax 92.05 92.02 91.31 91.75 91.65 

VGGNet - softmax 91.76 91.63 91.14 92.35 91.38 

AlexNet - SVM 93.57 93.78 92.48 95.63 93.28 

ResNet - SVM 94.41 94.38 93.56 95.84 94.14 

VGGNet - SVM 95.00 94.87 94.34 95.91 94.62 

Proposed Method 97.34 93.87 95.63 97.92 94.74 

 

This study also evaluated the performance of the proposed 

method in terms of classification by using a custom CNN 

architecture and different classifiers, including SVM, NB, and 

DT. The results, as displayed in Table 5, demonstrate that the 

proposed method surpasses the performance of the other 

classifiers. 

The reason for the improved performance is due to the 

utilization of various classifiers, each having its unique 

strengths and weaknesses, resulting in a more comprehensive 

and diverse representation of the underlying data. Therefore, 
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an ES of classifiers averaged out the errors made by individual 

classifier. Thus, proposed method used an ES of three 

classifiers (SVM, NB, DT) that combined the predictions of 

all classifiers using MVS to make a more accurate prediction 

to grade the cataracts. 

Table 5. Performance comparison of the proposed 

methodology using various classifiers 

Methods ACC PRE SEN SPE F1 

CNN - SVM 94.84 92.62 86.25 97.71 89.32 

CNN - NB 95.94 89.88 94.37 96.46 92.07 

CNN - RF 95.78 90.30 93.13 96.67 91.69 

Proposed Method 97.34 93.87 95.63 97.92 94.74 

4.3 Computation time 

The computation time for each stage of the proposed 

methodology is documented in Table 6. The findings reveal 

that the feature extraction process requires a duration of 0.35 

seconds, while the classification of a single retinal test image 

takes 0.60 seconds, resulting in a total computation time of 

0.95 seconds. The comparison chart depicted in Figure 10 

illustrates the superiority of the proposed method in terms of 

speed, as compared to previous approaches. This is achieved 

through the implementation of compact kernels, a reduced 

number of training parameters, and fewer layers, in CNN 

which facilitate the rapid extraction of features from retinal 

images. 

Table 6. The computation time for each step in the proposed 

methodology 

4.4 Result analysis and discussion 

This method initially uses preprocessing and augmentation 

techniques to elevate the image quality and enlarge the size of 

the dataset, subsequently selecting 800 high-quality images 

per class in consultation with an expert ophthalmologist. The 

augmented dataset is subsequently divided into 80:20 for 

training and testing data, respectively. During the training 

phase, the CNN model is trained on the training data in batches 

of 32 and the network weights are optimized within the range 

of [-1, 1]. The learning rate is set at 3×10-4 and dropout values 

are established as 0.4, 0.4, 0.5 to deter overfitting. The other 

hyper-parameters are established as indicated in Table 7. For 

cataract classification, an ES of NB and DT, including linear 

kernel SVM classifier for CNN model. The linear kernel 

function is selected as it performed well with a large number 

of features and reduced computational cost. During the testing 

phase, the final outcome is established through the MVS 

approach based on the predictions of all classifiers. The results 

indicate that the proposed method exhibits superiority over all 

pretrained CNN models with softmax classifier by a margin of 

approximately 5 to 6%, and all pretrained CNN models with 

SVM classifier by a margin of approximately 2 to 3%, as well 

as custom CNN models with individual classifiers in the ES 

by a margin of 1 to 3% in terms of accuracy. The computation 

time encompasses both feature extraction and image 

classification time. Figure 10 presents a comparison of the 

computation time for various methods. It can also be observed 

from Table 6 and Figure 10 that the time required to classify a 

test sample using a AlexNet-softmax classifier, VGG19-

softmax classifier, ResNet50- softmax classifier, AlexNet-

SVM classifier, VGG19- SVM classifier, ResNet50- SVM 

classifier, and the proposed method is 1.15 seconds, 1.25 

seconds, 1.35 seconds, 1.20 seconds, 1.30 seconds, 1.40 

seconds and 0.95 seconds respectively. This indicates that the 

classification of fundus images with the proposed method is 

faster than the other methods. The reason of less computation 

time of the proposed method compare to other pre-trained 

networks is the use of the custom CNN network that has lesser 

layers, small size kernels and fewer trainable parameters. 

Figure 10. Comparative chart of computation time (s) of 

proposed method with other methods (one image) 

Table 7. Fine-tuned hyperparameters details 

Configuration Value 

Learning Rate 0.0003 

Epochs 40 

Batch Size 32 

Optimizer ADAM 

Network Weights [-1 1] 

To evaluate the efficacy of the proposed method, its 

performance is compared with state-of-the-art techniques. 

Table 8 provides a comparison of different cataract 

classification methods using common performance metrics. 

Imran et al. [42] created an automated system for identifying 

various levels of cataracts by utilizing a D-CNN in conjunction 

with data augmentation methods. The standard data 

augmentation and Gaussian scale space theory methods are 

utilized to improve the quantity and quality of the data. This 

approach achieved an accuracy of 93.79%. Another method by 

Cao et al. [10] used an enhanced Haar wavelet transform to 

extract features and achieved an accuracy of 85.98% in four-

class cataract grading. Pratap and Kokil [24] invented a 

method that performs image quality assessment, then select 

only good-quality images for further processing. A pre-trained 

AlexNet and an SVM classifier are utilized for feature 

extraction and classification, achieving an accuracy of 

92.87%. Imran et al. [28] used a hybrid model that combines 

three pre-trained CNNs (Alexnet, VGGNet, ResNet) and one 

Procedure 
Total Computation Time 

(Seconds) 

Training time 180 

Validation time 22 

Feature extraction time 

(Single testing Image)  
0.35 

Classification time 

(Single testing Image) 
0.60 
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SVM classifier, resulting in 95.63% accuracy. Yadav and 

Yadav [29] presented hybrid approach, leveraging various pre-

trained CNNs (AlexNet, VGGNet, ResNet) with transfer 

learning for feature extraction. The feature vectors generated 

by each network individually, as well as in a fused form, are 

applied to ES of SVM classifiers for 4-stage cataract 

classification. The accuracy obtained by this method was 96. 

25%. The data presented in Table 8 demonstrates the 

superiority of the proposed methodology in comparison to 

other state of art methods. The evaluation of the proposed 

methodology can be visualized through the confusion matrix 

depicted in Figure 11(a) and ROC displayed in Figure 11(b). 

Table 8. Performance comparisons of the proposed method with existing methods 

Authors Year Algorithms ACC SEN SPE PRE 

Imran et al. [42] 2019 D-CNN-Softmax 93.79% 95.40% 93.70% 93.56% 

Cao et al. [10] 2020 Improved Haar wavelet 85.98% 84.65% 95.29% 86.01% 

Pratap and Kokil [24] 2021 Alexnet-SVM 92.87% 92.88% 93.04% 93.04% 

Imran et al. [28] 2020 Alexnet-VGGNet-ResNet-SVM 95.63% 95.62% 95.98% 95.65% 

Yadav and Yadav [29] 2022 Alexnet-VGGNet-ResNet-ES of SVMs 96.25% 96.25% 96.24% 98.74% 

Proposed Methodology 2023 CNN with ensamble of SVM, NB, RF 97.34% 93.87% 95.63% 97.92% 

(a) Confusion matrix (b) ROC curve

Figure 11. Performance visualization of proposed methodology 

5. CONCLUSIONS

The present study introduces a new methodology for 

cataract classification, utilizing a custom CNN model and a 

combination of SVM, NB, and DT classifiers. The proposed 

custom CNN model is designed with smaller parameters, 

reduced layers, and small-sized kernels, making it 

computationally efficient. The automated feature extraction 

performed by the CNN model is then utilized to train the ES 

of SVM, NB, and DT classifiers, which in turn make 

predictions via MVS. The outcomes of this study exhibit that 

the method proposed exhibits superiority over existing 

methods with regards to accuracy, and has faster computation 

time. This method has the potential to be applied in rural areas, 

as it is non-invasive and does not necessitate the presence of 

an ophthalmologist. The authors intend to augment the 

accuracy of the proposed method by subjecting it to testing on 

a dataset that is more extensive and diverse in the future. 
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