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In coal mining environments, both complexity and potential hazards are inherently present. 

Responding to the critical need for improved coal mine safety, a method was developed for 

the real-time surveillance of these hazards using an adapted YOLO algorithm. Initially, an 

algorithm, which amalgamates attention mechanisms and multi-feature fusion for the 

detection of safety hazards in coal mines, was presented. Utilizing the YOLOv3 framework, 

the Gc Net attention module was integrated, a reverse feature fusion pathway was 

established, and a three-scale prediction module was constructed. Such modifications were 

designed to identify hazards of various dimensions and configurations, thus augmenting the 

approach's robustness in intricate situations. Further, the model's loss function underwent 

optimization to address the imbalances observed in the distribution of positive and negative 

samples concerning their numbers and complexities. Through experimentation, the efficacy 

of the proposed method was demonstrated. 
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1. INTRODUCTION

Globally, coal mines are identified as fundamental energy 

providers, and their seamless operation holds paramount 

importance for the global economic landscape [1, 2]. 

Nevertheless, inherent intricacies and potential dangers in coal 

mine settings have been observed to render these 

environments susceptible to frequent safety hazards [3, 4]. 

These hazards not only imperil miners but also disrupt the 

continuity of mining operations. Consequently, the importance 

of real-time monitoring techniques for these hazards in coal 

mines has been accentuated [5, 6]. 

Historically, coal mine safety hazards have been 

predominantly monitored through manual inspections and 

sensor-based techniques [7, 8]. In these methods, inherent 

shortcomings have been identified. Manual inspections, while 

hands-on, are time-consuming and exposed to factors like 

environmental conditions, fatigue, and human error [9, 10]. 

Conversely, sensor-based techniques, though adept at real-

time surveillance, have been reported to occasionally give rise 

to false alarms or oversight, particularly in the multifaceted 

terrains of mines [11, 12]. Hence, an emergent need for 

adopting advanced technological methodologies to augment 

real-time surveillance of coal mine safety hazards has been 

highlighted in mine safety literature [13, 14]. 

In the backdrop of technological advancements, 

considerable strides in computer vision and deep learning are 

noted across diverse domains [15, 16], with a pronounced 

impact on object detection [17, 18]. The YOLO algorithm, 

known for its swift and efficient object detection capabilities, 

is acknowledged for its prowess in real-time processing and 

precision [19, 20]. When tailored for the surveillance of coal 

mine safety hazards, it is posited that the YOLO algorithm 

could potentially bridge the gaps presented by traditional 

techniques [21, 22], refining the real-time efficacy and 

accuracy of safety hazard surveillance [23, 24] and fortifying 

coal mine safety management mechanisms. 

This research delves into harnessing the YOLO algorithm 

for real-time hazard monitoring in coal mines. Section 2 

elucidates an algorithm specifically tailored for the detection 

of safety hazards in coal mines, incorporating attention 

mechanisms and multi-feature fusion. With the foundation on 

the YOLOv3 framework, the integration of the Gc Net 

attention module, the establishment of a reverse feature fusion 

pathway, and the design of a three-scale prediction module are 

detailed. Such enhancements have been associated with 

heightened sensitivity to hazards of diverse dimensions and 

configurations, solidifying the approach's adaptability in 

intricate settings. Section 3 delves into the enhancement of the 

model's loss function, which seeks to rectify the prevalent 

disparities in sample distribution, both in quantity and 

complexity. The culmination of the study presents 

experimental validations and charts potential trajectories for 

future research, envisioning substantial contributions to the 

realm of real-time coal mine hazard monitoring methodologies. 

2. YOLO-BASED MONITORING MODEL FOR COAL

MINE SAFETY HAZARDS

In the quest to enhance coal mine safety hazard monitoring, 

a fusion of attention mechanisms and multi-feature systems 

was introduced. For effective real-time monitoring of such 

hazards, two factors emerge as paramount: timeliness and 

accuracy. Accidents can only be preemptively averted through 

prompt and precise identification and location of these hazards. 

The YOLOv3 algorithm framework, renowned for its 

remarkable real-time and accuracy attributes, was thus chosen 

as the foundational structure. Recognizing the complexity of 

mine terrains, an elevation in the feature representation ability, 
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achieved through attention mechanisms, was seen to bolster 

model precision in hazard detection. To augment the 

representation of these hazard features, a cascading model was 

delineated. This model integrates the attention mechanism of 

the Gc Net module between the backbone network and the 

prediction module. Additionally, the introduction of a reverse 

feature fusion path and a three-scale prediction module aimed 

to enhance the utility of detailed hazard information. Such 

integrations were found to be effective in discerning safety 

hazards of diverse magnitudes and forms, enhancing the 

algorithm's resilience in multifaceted settings. 

Deeper network structures, such as DarkNet-53/101/152, as 

opposed to shallower ones like DarkNet-18/34, were identified 

to harness a broader spectrum of hierarchical features. Such 

intricate feature extraction capabilities were linked with 

superior algorithm performance in complex mine 

environments. A challenge noted with increased network 

depth is the exacerbation of gradient vanishing. However, the 

incorporation of residual connections and bottleneck 

structures in networks like DarkNet-53/101/152 appeared to 

counteract this gradient vanishing phenomenon, ensuring 

model stability and convergence during the training phase. 

The computational framework for the residual module in the 

DarkNet-53/101/152 network can be captured by Eq. (1), 

illustrating convolution, activation, and normalization 

processes, denoted symbolically as d(·). 

 

( )z d z=  +  (1) 

 

For monitoring tasks associated with coal mine safety 

hazards, a model resembling human selective focus—

centering on pivotal details while disregarding redundant 

elements—is sought. In this context, the GcNet module, which 

combines the channel weight calibration attributes of the 

SeNet module with the global channel information 

consolidation capabilities of the N1Net module, has been 

highlighted. Notably, in intricate mining terrains, this robust 

feature extraction mechanism has been correlated with 

heightened algorithmic efficacy in real-world scenarios, 

affirming its pivotal role in precise detection and recognition 

of coal mine safety hazards. 

Considering a convolution feature map where height and 

width are denoted by G and Q respectively, and the 

accompanying feature channel number is represented by V, the 

two convolution layers can be expressed as (qc1,qc2). When the 

input feature vector is symbolized as z and the total number of 

such feature vectors is represented by b, the integration of 

attention mechanisms into coal mine safety hazard detection 

means that the data from the coal mine safety hazard 

monitoring image processed by the module can be 

encapsulated within the matrix depicted by Eq. (2). 

 

( )1 2, ,..., ,b bz z z z z E=   (2) 

 

In the realm of mine safety hazard monitoring, the emphasis 

on global spatial information is unequivocal. Such 

prioritization can be attributed to the spatial data's capacity to 

discern potential safety hazard affiliations with adjacent 

environments, thereby refining hazard identification and 

localization. The GcNet, by leveraging convolution layers and 

the normalization exponential function SoftMax, has been 

shown to underscore this global spatial data. At the same time, 

a channel number compression of the global attention feature 

map has been found to curtail the model's computational 

complexity. In real-time monitoring environments, such a 

reduction in complexity is understood to bolster the model's 

instantaneous responsiveness, aligning with the urgency 

inherent to mine safety surveillance. The GcNet module's 

architecture can be viewed in Figure 1. 

 

 
 

Figure 1. Schematic representation of the GcNet module 

 

In the appraisal of the suggested mine safety hazard 

detection model, the computation of global attention weights 

is identified as a fundamental element. The 1×1 convolution is 

represented by qj, the input feature map by z, and the SoftMax 

function by A(·). After computation using the SoftMax 

function, the output is denoted as D, with associated formulas 

illustrated below: 
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( )jD A q z z=  (4) 

 

The significance of global context information in the realm 

of mine safety hazard detection has been accentuated. It has 

been discerned that this context assists in apprehending global 

features within the mining environment, subsequently 

amplifying the model's hazard recognition aptitude. A dual 

convolutional structure has been adopted, enabling the model 

to utilize the compressed global context information more 

efficiently. After undergoing two convolution layers, 

normalization layers, and culminating with the LeakyReLU 

activation function, an enhancement in the attention 

mechanism's performance is noted. Such a mechanism 

accentuates crucial data, reinforcing the model's proficiency in 

pinpointing and discerning safety hazards within multifaceted 

mine environs. For the integration of global context data with 

local feature data, thereby achieving a harmonious and 

thorough feature extraction, the attention feature map is 

merged with the input feature map, culminating in a new, 

cohesive feature map. 

The 1×1 convolution layers are denoted as qc1 and qc2, the 

normalization layer as MB, the LeakyReLU activation 

function as LR, the input feature map again by z, and the 

resultant output post the GcNet module integration as xu. The 

computation formula delineating the creation of this fused 

feature map is provided as: 

 

( )( )2 1 1 2, , ,eV G Q V G Q

u c c c cx z q LR MB q D q E q E   = +    (5) 

 

During activation function engagement, the input feature 

mapping dimension is maintained at GQ×1×1. It is postulated 
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that the channel of this input feature mapping is symbolized 

by V and the channel reduction ratio by e. Following the qc1 

convolution layer process, the channel number undergoes a 

transformation to eV. To synergize with the initial input 

feature map, the channel count of this feature map is reverted 

to V after progressing through the qc2 convolution layer. 

 

 
 

Figure 2. Diagram depicting the three-scale prediction 

module 

 

As depicted in Figure 2, a three-scale prediction module was 

designed to optimally exploit the intricate safety hazard 

features inherent in the shallow network feature maps of coal 

mines. Within the YOLOv3 framework, the Intersection over 

Union (IoU) has been utilized to calculate the discrepancy 

between predicted and actual bounding boxes, acting as an 

evaluative gauge for bounding box prediction quality. An 

elevated IoU value signifies an enhanced congruency between 

the predicted and actual bounding boxes, thus suggesting a 

commendably precise prediction. The actual bounding box 

data is symbolized as BK, the clustering centroid as JLZX, and 

the proportion of intersection to union as IoU. The 

mathematical representation for the IoU distance function is 

given by: 

 

( ) ( ), 1 ,f BX JLZX IoU BX JLZX= −  (6) 

 

In contrast to methods anchored in K-means clustering, the 

incorporation of Mean IoU (MIoU) as an evaluative metric 

was observed to elevate the consistency of clustering results. 

K-means clustering algorithms are known to potentially 

produce inconsistent clustering results, culminating in 

erroneous selections of K values and clustering boxes. 

However, the MIoU metric, when applied, provided a more 

steadfast evaluation of the disparities between diverse 

clustering results, thereby aiding in the discernment of more 

fitting K values and clustering boxes. The number of sample 

clusters, total samples, samples in the jth cluster center, sample 

index, and the index within the cluster center are denoted as j, 

b, lj, u, and k respectively. The mathematical construct for the 

MIoU objective function is: 
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Assuming the culminating bounding box information is 

symbolized as n*, the Sigmoid function as δ(·), the absolute 

coordinates of the feature map cell's top-left corner as vz and 

vt, and the dimensions of the feature map in terms of width and 

height as oq and og respectively, the divergence between the 

projected and actual bounding boxes is depicted as y*. The 

methodology encompassing the division of the feature map 

into cells, followed by the apportionment of prior boxes based 

on bounding box generation, is articulated as: 
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3. FORMULATION OF A SAMPLE-BALANCED LOSS 

FUNCTION 

 

In imagery from coal mine safety hazard monitoring, a 

disparity is often observed regarding the distribution, both in 

quantity and complexity, of positive and negative samples. 

The prevalence of negative samples (regions devoid of hazards) 

significantly surpasses that of positive samples (regions 

depicting hazards), while samples presenting intricate 

identifications remain comparatively infrequent. Through the 

enhancement of the confidence loss function, such imbalances 

have been addressed, enabling the model to allocate enhanced 

attention to samples that present increased complexity during 

the training phase. 

In order to accentuate learning from samples that garner 

lower scores, the confidence loss function of the devised 

model is symbolized as LCO, with the sample's confidence 

denoted by o. The ensuing formulation is thereby introduced: 
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Prior to the integration of the loss function, various 

equilibration factors are incorporated. It is assumed that the 

sigmoid function is portrayed by δ, the confidence by o, a 

minuscule constant by ζ, and the class label by t. From these 

assumptions, the subsequent relationships emerge: 
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Upon inspection of a positive sample extracted from coal 

mine safety hazard monitoring imagery, as o verges towards 1, 

[2λ-1] converges to 0, implying a negligible weight associated 

with the easily discernible sample. Conversely, as o nears 0, 

[2λ-1] gravitates towards 1, insinuating an erroneous hazard 

classification during the monitoring phase. Under such 

circumstances, the imposition of a penalty weight is 

recommended. 

Bounding box regression has been recognized as an 

imperative component in the realm of coal mine safety hazard 

monitoring. Within this framework, the GIOU loss function 

has been adopted. Given that the smallest exterior rectangle 

encompassing two boxes is signified as V, the union of the two 

boxes as N∪Nhy, and the area of V minus N∪Nhy is represented 

as V\N∪Nhy, the ensuing calculation is proposed: 

 

\
1 1

hy

GIoU

V N N
L GIoU IoU

V


= − = − +  (12) 
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The DIOU metric, by taking into account the distance 

between the anticipated and target boxes, their overlap rate, 

and the effects of scale, offers a more nuanced quantification 

of discrepancies. A heightened accuracy in target localization 

is thus achieved when the DIOU loss is utilized. For real-time 

coal mine safety hazard monitoring applications, the DIOU is 

integrated to compute the loss value between the target and 

predicted boxes of the model. 

Given that the centers of the anticipated and actual boxes 

are symbolized as N and Nhy respectively, the Euclidean 

distance between these central points is characterized by ϑ. 

Further, the diagonal distance of the minimal enclosing region 

containing both N and Nhy is denoted by V. The computational 

formula for DIOU is presented: 

 

( )2

2
1 1

hy

DIoU

N N
L DIoU IoU

V

 
= − = − +  (13) 

 

During the training phase, the constitutive elements of the 

model's loss function encompass the bounding box loss, 

classification loss, and confidence loss functions. 

 

YOLO GI CO CLLOSS L L L= + +  (14) 

 

For analytical purposes, let the comprehensive loss function 

be symbolized as LOYO, the bounding box loss function as 

LGI, the classification loss function as LCL, and the 

confidence loss function as LCO. The bounding box loss 

function undergoes enhancement to LDIoU, while the 

confidence loss function experiences enhancement to LKD. 

Assuming the total grid count is represented by A×A and the 

cumulative bounding box number by N, the presence or 

absence of the intended detection target is depicted by OB and 

NO respectively. The onus of prognosticating the target within 

the uth grid's kth bounding box is represented by UOB
uk. If 

UNO
uk is set at 1, the kth bounding box in the uth grid is devoid 

of the target essential for detection. In contrast, a value of 0 for 

UNO
uk indicates the presence of the detection target. The 

refined comprehensive loss function is articulated as: 

 

YOLO DIoU KD CLLOSS L L L= + +  (15) 
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When projecting the confidence of the anticipated bounding 

box, it is designated as Vk
u. The class label is also termed Vk

u, 

a minute constant is expressed as ζ, the Sigmoid function is 

signified as δ, and the class probabilities of both the predicted 

and actual target bounding boxes are identified as Ok
u. This 

leads to the establishment of the subsequent relationship: 
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4. RESULTS AND COMPARATIVE ANALYSIS OF 

HAZARD DETECTION 

 

 
1) Natural hazards (ZR) 

 

 
2) Technical hazards (JS) 

 

 
3) Management hazards (ZR) 

 

Figure 3. Comparison of P-R curve of different types of coal 

mine safety hazards before and after improvements 

 

In Figure 3, alterations in the Precision-recall metrics for 

various coal mine safety hazards, notably natural hazards, 

technical hazards, and management hazards, before and after 

procedural improvements, are delineated. From the graphical 

data, Precision-recall metrics, before enhancements, are 

observed to oscillate between 0.67 and 0.98, reflecting a 
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discernible volatility. Such variations indicate that the 

precision and recall rates in identifying these categories of 

hazards were initially not optimal. Post the introduction of 

advancements, a marked elevation in the Precision-recall 

values, spanning 0.8 to 0.999, is witnessed, indicative of a 

more consistent performance. Through this analysis, it is 

discerned that the enhanced methodology for identifying coal 

mine safety hazards manifests notable improvements in both 

precision and recall rates. The inference can thus be drawn that 

this enhanced methodology offers a more precise 

identification of genuine hazards, contributing significantly to 

the elevation of safety production standards in coal mines. 

The insights derived from Figure 4 underscore the 

frequency of accurate and erroneous detections across multiple 

sample sets. Within Sample Set 1, a variance in correct 

detection quantities is noticed, spanning from 120 to 315. 

Conversely, Sample Set 2 demonstrates a broader range, 

extending from 3950 to 10100. Such differences shed light on 

the fluctuating proficiency of the hazard identification 

technology across distinct sample sets. The zenith of accurate 

detections is pinpointed at 315 (observed in sample 4), 

suggesting that the technology can, under specific 

circumstances, exhibit a high degree of efficacy in hazard 

detection. Erroneous detections are recorded to be minimal 

across samples, with counts for Sample Set 1 and Sample Set 

2 ranging between 4 to 25 and 405 to 1040 respectively. These 

figures imply commendable performance in reducing false 

positives, though avenues for augmentation are still apparent. 

Drawing from this analysis, the coal mine safety hazard 

identification technology is deduced to manifest varying 

degrees of performance concerning correct detections, but 

demonstrates notable competency in minimizing false 

positives. The insights derived suggest that while the 

technology possesses a commendable degree of accuracy, 

there remains potential for further refinement, particularly to 

achieve consistency across diverse sample sets. Given the 

varied characteristics of samples, there exists an opportunity 

to further fine-tune the technology to enhance its applicability 

and performance in real-world scenarios. 

 

 
1) Sample Set 1 

 
2) Sample Set 2 

 

Figure 4. Correct and incorrect detection results in different sample sets 

 

 
1)                               2)                          3) 

 

Figure 5. Visual representation of detection comparative analysis: Pre-enhancement, post-enhancement, and faster-RCNN 

algorithm 
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Table 1. Comparison of detection accuracy among different models 

 
Category Faster R-CNN SSD YOLOv2 Pre-Enhancement  Post-Enhancement 

Crack 72.93% 52.94% 73.93% 84.93% 85.38% 

Damage 59.38% 34.68% 39.74% 43.29% 71.83% 

Mine Water Accumulation 57.93% 47.05% 43.65% 46.29% 73.02% 

Miner Equipment and Behavior 53.29% 39.48% 39.45% 42.85% 83.83% 

Minecart Operational Anomaly 52.45% 24.73% 62.94% 71.94% 88.03% 

Mine Fire Source 69.37% 53.93% 32.48% 69.29% 72.40% 

Waste Accumulation 57.28% 35.92% 43.85% 62.93% 71.03% 

Sidewall Collapse 52.48% 23.94% 54.93% 61.39% 83.96v 

Passageway Blockage 52.68% 39.37% 42.67% 52.92% 83.92% 

Insufficient Lighting 42.69% 54.00% 42.84% 71.09% 86.92% 

Production Order 62.42% 30.29% 43.95% 54.29% 74.01% 

 

Table 2. Analytical comparison of recall and precision metrics: Pre and post enhancement 

 
Way P_ZR P_JS P_GL R_ZR R_JS R_GL 

Pre-Enhancement 83.94 82.94 82.94 65.92 50.19 90.13 

Post-Enhancement 68.29 71.93 76.93 56.28 41.03 81.11 

 

 
 

Figure 6. Comparative visual depiction of coal mine safety 

hazard detection pre and post model enhancement 

 

In Table 1, precision discrepancies among diverse models 

deployed for coal mine hazard detection are delineated. 

Precision performance for the Faster R-CNN is noted to vary 

markedly across categories, with recorded values spanning 

from 42.69% to 72.93%. The highest precision is attributed to 

the "cracks" category, marked at 72.93%, whereas the 

"insufficient lighting" category is discerned to have the lowest 

at 42.69%. SSD's precision performance is similarly 

characterized by marked variations, ranging from 23.94% to 

54.00%. Notably, the category "insufficient lighting" stands 

out with a precision of 54.00%, while "sidewall collapse" is 

identified as the least precise at 23.94%. Variation is again 

evident in YOLOv2’s performance, with metrics fluctuating 

between 32.48% and 73.93%. "Cracks" emerges as YOLOv2's 

most precisely identified category at 73.93%, with "mine fire 

source" presenting the least precision at 32.48%. Prior to 

enhancements, the model demonstrated considerable 

performance inconsistency, with precision values oscillating 

between 42.85% and 84.93%. The "cracks" category is 

observed to dominate with a precision of 84.93%, while the 

"miner's equipment and behavior" category registers the least 

at 42.85%. In contrast, post- enhancement, the model exhibits 

more constrained variations, with precision metrics ranging 

between 71.83% and 88.03%. The "abnormal mine cart 

operation" category stands out as the most precise at 88.03%, 

while "damage" ranks lowest at 71.83%. A comparative 

analysis suggests that the refined model, when benchmarked 

against Faster R-CNN, SSD, and YOLOv2, exhibits enhanced 

and more consistent precision across hazard categories. Such 

findings imply that the advanced model holds the potential to 

identify coal mine safety hazards with heightened accuracy, 

thus contributing to a potential elevation in coal mine safety 

standards. The practical implications of integrating this refined 

model remain promising, a sentiment further illustrated in 

Figure 5, which visually contrasts detection results across the 

pre-improved, post-improved, and Faster-RCNN algorithms. 

Through the data presented in Table 2, Precision-recall 

metrics for various technical hazard categories in coal mine 

safety, both pre and post enhancement, are elucidated. Upon 

examination of these figures, the following determinations 

were made: Prior to enhancement, the Precision for natural 

hazards was documented at 68.29%, while Recall was noted at 

56.28%. In the realm of technical hazards, Precision stood at 

71.93%, paired with a Recall of 41.03%. Management hazards, 

conversely, showcased a Precision of 76.93% and a Recall of 

81.11%. Subsequent to the enhancement process, Precision 

values for natural hazards experienced an ascent to 83.94%, 

while Recall adjusted to 65.92%. Technical hazards reported a 

Precision of 82.94% and Recall was recognized at 50.19%. 

Similarly, management hazards' Precision settled at 82.94% 

with an observed Recall boost to 90.13%. Drawing from these 

comparative metrics, it was discerned that the refined 

algorithm exhibited notable augmentations in both Precision 

and Recall, spanning natural, technical, and management 

hazards. Such advancements in algorithmic performance 

suggest heightened precision in coal mine safety hazard 

detection and a corresponding rise in recall. Therefore, within 

applied settings, integration of the herein presented enhanced 

algorithm may yield heightened detection results pertaining to 

coal mine safety hazards. 

In Figure 6, an analytical juxtaposition of mAP values for 

distinct coal mine safety hazards, both prior to and following 

model enhancement, is showcased. The pre-enhancement 

model's mAP values were found to oscillate between 0.75 and 

0.93. Noteworthy peaks in mAP values were identified within 

categories such as cracks, damage, water accumulation in 

mines, abnormal mine cart operations, mine fire sources, 

sidewall collapses, insufficient lighting, and production order, 

all equating to or surpassing the 0.9 mark. Post-enhancement, 
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the model's mAP values consistently hovered within a 

bandwidth of 0.8 to 0.93. Within this refined performance, 

categories like abnormal mine cart operations, mine fire 

sources, and production order emerged as the zenith, all 

registering at 0.93. Through this analysis, it was inferred that 

the refined algorithm not only showcased elevated mAP values 

across a majority of coal mine safety hazard categories but also 

maintained a more balanced performance profile. Such 

findings point toward the conclusion that the enhanced 

algorithm, through its superior mAP metrics, promises 

enhanced detection accuracy in coal mine safety hazards. In 

tangible settings, harnessing this enhanced algorithm may 

translate to superior detection efficacy concerning coal mine 

safety hazards. 

 

 

5. CONCLUSION 

 

A comprehensive examination was undertaken to elucidate 

the real-time monitoring capabilities of coal mine safety 

hazards using the YOLO algorithm. A distinct algorithm, 

which seamlessly integrates attention mechanisms with multi-

feature fusion, was proposed within the framework of the 

esteemed YOLOv3 algorithm. Notably, the integration of the 

attention mechanism, denoted as the Gc Net module, was 

observed, and a reverse feature fusion path was incorporated. 

Furthermore, a tri-scale prediction module was meticulously 

designed, posited to adeptly capture safety hazards across 

diverse magnitudes and configurations. This enhancement 

bolsters the algorithm's resilience in multifaceted 

environments. Simultaneously, efforts were directed towards 

enhacing the model's loss function, a step that addresses the 

recurrent issue of unbalanced distributions in positive and 

negative sample quantities, as well as the disparities in their 

inherent complexities. 

Drawing from the experimental outputs, the ensuing 

determinations were made: 

(1) When subjected to the rigorous task of monitoring coal 

mine safety hazards, the enhanced model was discerned to 

manifest consistent and superior accuracy across hazard 

categories. Relative to algorithms such as Faster R-CNN, SSD, 

and YOLOv2, a heightened precision in the detection of coal 

mine safety hazards by the improved model was revealed. 

Such findings underscore the model's refined capability to 

pinpoint coal mine safety hazards, a factor intrinsically tied to 

bolstering safety standards in coal production. 

(2) A pivot to the Precision-recall metrics for specific 

technical hazard categories within coal mine safety unveiled 

discernible ameliorations in Precision and Recall for natural 

hazards, technical hazards, and management hazards post-

enhancement. This observation resonates with the assertion 

that the refined algorithm possesses an enhanced acumen to 

identify coal mine safety hazards with heightened precision, 

complemented by a pronounced uptick in recall rates. 

(3) With regard to the mAP values spanning diverse coal 

mine safety hazard categories, a post-improvement surge in 

mAP values for the majority of these categories was identified. 

This robust performance profile implies that, in terms of 

accuracy, the enhanced algorithm is endowed with a superior 

prowess, as evidenced by its augmented mAP metrics. 

In encapsulation, when integrated within real-world settings, 

the deployment of the refined algorithm holds promise in 

furnishing superior coal mine safety hazard detection 

outcomes. Experimental outcomes corroborated the model's 

augmented capabilities in the identification of coal mine safety 

hazards, positing it as a pivotal asset in amplifying safety 

protocols in coal production. 
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