
Real-Time Hole-Filling in Mobile Augmented Reality Gaming: A Novel Algorithm to

Overcome Depth Sensor Limitations

Do Heon Choi1 , Seok-Kyoo Kim1 , SeongKi Kim2*

1 Department of Game Design and Development, Sangmyung University, 20, Hongjimun 2-gil, Jongno-gu, Seoul 03016, Korea
2 National Center of Excellence in Software, Sangmyung University, 20, Hongjmun 2-gil, Jongno-gu, Seoul 03016, Korea

Corresponding Author Email: skkim9226@smu.ac.kr

https://doi.org/10.18280/ts.400407 ABSTRACT

Received: 22 February 2023

Revised: 16 July 2023

Accepted: 28 July 2023

Available online: 31 August 2023

In the realm of Augmented Reality (AR) within mobile gaming, the planes recognized by

depth sensors delineate the space for content implementation, thereby constraining the scope

of representation. Errors in these recognized planes may inhibit the progression of mobile

AR. A method is explored that utilizes 'Meshing' facilitated by Unity, generating meshes

corresponding to physical space and enabling expansion of content space beyond mere

planes. This approach, although promising, is contingent on the depth sensor, leading to the

creation of holes beyond the sensor's reach. These holes present a critical issue, allowing

game objects to escape. To address this challenge, an algorithm is proposed that consists of

two main components: 'Hole-Finding' and 'Hole-Filling'. In 'Hole-Finding', real holes are

identified by the calculation of the direction of each loop. Subsequently, 'Hole-Filling'

computes the centroid-vertex of each hole and employs it for the hole-filling process. A real-

time hole-filling performance with only a 7 μsec degradation was observed, heralding a

significant step towards mitigating this problem within AR content. This investigation

contributes a novel solution to a crucial technical obstacle, thereby enhancing the

functionality and potential of AR in mobile gaming.

Keywords:

AR, Hole-Filling algorithm, mobile gaming,

real-time processing, AR game development

1. INTRODUCTION

With the advancement of AR, a significant enhancement

has been observed in various domains, notably including the

mobile gaming sector. Initially, early mobile AR games were

developed to render 3D objects on designated markers, serving

as reference coordinates [1, 2]. Subsequent endeavors shifted

towards the utilization of a Simultaneous Localization and

Mapping (SLAM)-based markerless approach [3, 4]. A

notable landmark was achieved with the release of 'Pokemon

Go', a markerless game grounded in location-based

information, bringing AR games to public attention [3, 5].

Subsequently, ARKit and ARCore, frameworks for AR

applications, were unveiled by Apple and Google respectively

[6, 7], and applied to 'Pokemon Go', manifesting more realistic

AR experiences. Despite this progress, no mobile AR game

has eclipsed 'Pokemon Go', and the repetitive pattern exhibited

by most mobile AR games is identified as a likely factor for

market stagnation [8].

Currently, the deployment of mobile AR games is

constrained to planes recognized by the sensor, further

hampered by the performance limitations of mobile devices.

Inaccuracies in object placement within real space owing to

these constraints yield unnatural experiences, undermining

immersion [8, 9]. Efforts to address these limitations have

been undertaken [10, 11]; improvements in plane recognition

have been achieved in accordance with the user's posture [10],

while play spaces limited to planes have been extended to

rectangular parallelepipeds [11]. Yet, constraints persist,

restricting play space to specific areas. These hindrances are

cited as factors that have precluded the diversification of

mobile AR games, leading to the failure of titles emulating

'Pokemon Go'.

Recent innovations by Unity, including the 'AR Foundation',

enabling the convergence of ARKit and ARCore within a

unified framework, have offered prospects for further

enhancements. Specifically, the introduction of 'Meshing,'

which generates meshes corresponding to physical space using

sensor data, has opened avenues to transcend play spaces

confined to planes. However, this approach has been

challenged by the potential generation of holes where meshes

are unattainable by the sensor, giving rise to serious gameplay

implications. Such holes can induce abrupt disappearances or

escape of game objects, disrupting player engagement [8, 9].

Without addressing this issue, the utilization of 'Meshing' in

game development may lead to negative gameplay

experiences and constrict the expressive potential of

developers.

The objective of this study is the exploration of methods to

mitigate the hole problem through the generation of

supplemental meshes capable of filling holes. A centroid-

based method, originally conceived for additive

manufacturing repair, is introduced, contrasted, and analyzed

against existing 'Meshing' approaches. The suitability of the

proposed method, with an emphasis on maintaining real-time

performance within AR, is validated. The remainder of this

paper is organized as follows: Section 2 provides an overview

of related works; Section 3 elaborates on the ‘Hole-Filling

algorithm’; Section 4 offers comparisons between the results

obtained through 'Meshing' and those achieved via the

proposed ‘Hole-Filling algorithm’, examining the impact on

game performance; and Section 5 concludes the paper.

Traitement du Signal
Vol. 40, No. 4, August, 2023, pp. 1377-1384

Journal homepage: http://iieta.org/journals/ts

1377

https://orcid.org/0009-0008-2599-8993
https://orcid.org/0000-0003-4725-0288
https://orcid.org/0000-0002-2664-3632
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.400407&domain=pdf

2. RELATED WORK

With the progression of 3D scanning technology, significant

investigation into Hole-Filling algorithms has been conducted

to remedy the occurrence of holes generated by diverse causes

within 3D models. These algorithms are primarily bifurcated

into two major categories, namely 'Point Cloud-based

methods' and 'Mesh-based methods' as shown in Figure 1 [12].

Figure 1. Classification of 'Hole-Filling algorithm'

Initially, the focus was directed towards 'Point Cloud-based

methods', where raw point data of scanned objects were

utilized as input. Subsequent advancements in computer

graphics instigated a shift towards 'Mesh-based methods',

which became predominant. These methods largely accept

meshes, comprised of vertices and triangles, as input and are

further categorized into 'Volume-based methods' and 'Surface-

based methods'.

Within 'Volume-based methods', the input mesh is

transformed into volume representation, followed by the

application of algorithms such as Volumetric Diffusion,

Octree Grid, and Oriented Voxel Diffusion, to ensure

reconstruction without defects [12, 13]. In contrast, 'Surface-

based methods' operate solely on the input hole's information

or its surrounding information to fashion patches for the hole.

The trajectory of research in this area has witnessed multiple

developments.

Initially, Peter [14] devised a technique to fill the holes by

creating new triangle meshes and modifying them to align with

the surrounding density. This was followed by smoothing to

produce a more even surface. Xia and Zhang [15] introduced

an innovative method to fill holes through curve and corner

splitting. Through this method, feature points were extracted

via Euler spirals and quadratic equation optimization from the

segmented holes. The recovery of feature lines with these

points and subsequent hole-filling was achieved using

Advancing Front Methods (AFM), characterized by the

application of triangular meshes within specific spaces.

Feng et al. [16] proposed a classification of holes based on

their size (small, medium, large) determined by the number of

vertices, with each category being addressed through tailored

techniques. An alternative approach was introduced by Park et

al. [17], which focused on the creation of patches that precisely

fit various holes. By utilizing a process involving triangulation,

refinement, fairing, and smoothing, source and target patches

were generated, followed by a measurement of shape

differences. The blending process facilitated the creation of

patches with pronounced features, enabling the seamless

filling of holes.

It has been observed that 'Surface-based methods' are

typically less noisy and faster in comparison to 'Volume-based

methods' that necessitate comprehensive reconstruction.

Considering the emphasis on high performance within AR,

'Surface-based methods' were selected for this study. Despite

the efficiency of surface-based methods, their real-time

application in dynamic environments such as games remains a

challenge, indicating a need for a more lightweight approach.

This necessity spurred the design of a method tailored for

small-sized holes.

3. PROPOSED ALGORITHM

As delineated in Section 2, the prevailing studies

predominantly assess the fidelity of object restoration to the

original form and commonly require hundreds of milliseconds

to fill most holes. Given the imperative need for high

performance in Hole-Filling within the context of 'AR

Foundation' Meshing, employed within games or simulations,

the design of a real-time structure was deemed necessary. The

proposed method, as illustrated in Figure 2, was conceived to

address these demands.

Figure 2. The structure of the proposed method

Within the framework outlined in Figure 2, the 'Meshing' of

'AR Foundation' is responsible for adding, updating, and

removing meshes in accordance with data transmitted from

sensors. The proposed method is activated when 'Meshing'

either adds or updates meshes. Initially, 'Hole-Finding'

identifies holes via the corresponding mesh's vertices and

triangles and forwards the hole data to 'Hole-Filling'.

Subsequently, 'Hole-Filling' determines the vertices and

triangles of patches required to fill holes, supplements the

original data, and updates the mesh. The resultant structure,

depicted in Figure 2, facilitates the generation of new vertices

and triangles to fill the holes.

3.1 Hole-Finding

The utilization of depth sensors can lead to the formation of

holes, exemplified in Figure 3.

1378

Figure 3. Generated mesh with a hole

As illustrated in Figure 3, the perimeter of the hole is

defined by the presence of only a single adjacent triangle. The

execution of ‘Hole-Finding’ is accomplished by identifying

the edges associated with a singular triangle and subsequently

recognizing holes by connecting these edges, leveraging the

inherent closed-loop structure of the holes.

An inherent challenge in this method is the possible

generation of an outer line that is uncharacteristic of standard

3D models. This outer line of the mesh is also identified as a

closed loop, as depicted in Figure 3. In this study, the

counterclockwise closed loop was excluded from the

compilation of closed loops to eliminate the outer line from the

holes, as demonstrated in Figure 4.

(a) Identification of counterclockwise closed loops

(b) Modification of the vertices of the boundary

Figure 4. Methods for finding outer lines

As indicated in Figure 4(a), the holes are oriented clockwise,

whereas the outer lines are counterclockwise due to the partial

shaping of the generated 3D models. When calculating the

direction of closed loops, the vectors of the boundaries were

rotated to align the normal vectors with the Y axis, as

portrayed in Figure 4(b). Following the projection of the

rotated vectors onto the XZ plane, the direction of the closed

loop was ascertained using a vertex with an angle exceeding

180 degrees but falling short of 360 degrees.

3.2 Hole-Filling

The architecture of 'Hole-Filling', delineated in Figure 5, is

bifurcated into two fundamental components: ‘Simple Hole-

Filling’ and ‘Centroid-based Hole-Filling’.

Figure 5. Hole-Filling structure

In the process of filling the detected holes, as characterized

in Subsection 3.1, the distinction between the two methods

becomes salient.

3.2.1 Simple Hole-Filling

The operation of 'Simple Hole-Filling' is invoked when the

boundary of a hole is constituted by either three or four

vertices. In these instances, the method entails connecting the

vertices of the boundary to one another, circumventing the

need to calculate the central vertex. However, if the process

involves the creation of a quadrilateral patch and a reflex angle

is encountered, the vertex associated with the reflex angle is

first connected to the opposing vertex to form a triangle, as

depicted in Figure 6.

Figure 6. Centroid-based Hole-Filling

3.2.2 Centroid-based Hole-Filling

When the boundary of a hole consists of more than four

vertices, the centroid-based algorithm is implemented. This

algorithm is esteemed for its compatibility with real-time

games, owing to its capability to function in real-time [16].

As shown in Figure 6, the process of Centroid-based Hole-

Filling involves the calculation of the centroid vertex of the

vertices of each hole. Subsequently, the vertices for the new

triangles are constructed, and both the centroid vertex and the

new triangles are updated in the original meshes. Though

multiple approaches exist for calculating the centroid vertex,

in this study, the mean value of the vertices defining each hole

was utilized, a decision motivated by the desire to minimize

1379

computational cost.

3.3 Algorithm details

The synthesis of the 'Hole-Finding' and 'Hole-Filling'

techniques culminated in the development of Algorithm 1, a

distinct pseudo-code representing the proposed method. This

algorithm encapsulates a procedural sequence that delineates

the mechanism for restoring object integrity within the mesh

structure.

Algorithm 1. Hole-Filling algorithm

Input: vertices, triangles of original mesh

Output: vertices, triangles of updated mesh

1. foreach triangle in triangles of original mesh

2. Extraction of edges with one adjacent triangle

3. end

4. foreach edge in edges with one adjacent triangle

5. Reconfigure to be closed loops (v0, v1, … , vn)

6. end

7. foreach loop in closed loops

8. Rotate & Project the loop

9. Calculate the direction of the loop

10. end

11. Remove the opposite loop

12. if the number of found vertices > 4

13. Compute the centroid vertex vcentroid from (v0, v1, … , vn)

14. for (v0, v1, … , vn) do

15. Create new triangle including vcentroid

16. end

17. else

18. if the number of found vertices == 3

19. Create new triangle

20. if the number of found vertices == 4

21. for (v0, v1, … , vn) do

22. Check the reflex angle

23. end

24. if reflex angle

25. Create new triangles (vr-1, vr, vr + 2, vr + 2, vr , vr + 1)

26. if not reflex angle

27. Create new triangles (v0, v1, v2, v2, v1, v3)

Algorithm 1 represents the pseudo-code of the proposed

method. In this construct, lines 1 to 3 are dedicated to the

identification of boundary edges, lines 4 to 6 function to

connect these edges in order to detect holes, lines 7 to 11

operate to exclude outer lines from the detected holes, lines 12

to 16 facilitate the implementation of 'Centroid-based Hole-

Filling', and lines 17 to 27 govern the application of 'Simple

Hole-Filling'.

4. RESULT

This section elucidates the outcomes, inclusive of the

depiction of holes and the application of the Hole-Filling

algorithm to rectify them. The efficacy of the procedure is

assessed both in terms of performance metrics and its

applicability within a gaming context.

4.1 Performance metrics

The validation of Algorithm 1 was conducted utilizing

Unity 2022.2.0b8 and AR Foundation 5.0.2. An 'iPad Pro 4th

generation' equipped with 'Meshing' support was selected as

the mobile device for this assessment.

Initially, a comparative analysis was executed between the

generated results and the outcomes obtained post 'Hole-Filling'.

A locale exhibiting the sensor's constraints was selected for

this comparison. Figure 7(a) displays a blind spot, signifying

a sensor limitation when the native 'Meshing' is utilized

against the space. This spot is noteworthy as it inhibits mesh

generation. In contrast, as seen in Figure 7(b), the edges of the

holes are identifiable (highlighted within the red box) and

subsequently filled, as indicated by the red box in Figure 7(c).

Figure 8 furnishes further examples, with the original meshes

portrayed on the left, the 'Hole-Finding' outcomes in the center,

and the 'Hole-Filling' results on the right.

Subsequently, the proposed Hole-Filling algorithm's

performance was juxtaposed against existing Hole-Filling

algorithms [14, 17], building upon the recommended 'Hole-

Finding'. Each of the compared algorithms incorporated a

refinement function to enhance quality post hole-filling. The

same space was scanned 10 times over a duration of 5 minutes

to gauge the minimum elapsed time, maximum elapsed time,

and average elapsed time. The term "elapsed time" refers to

the duration required by the Hole-Filling algorithm to mend

the holes present within the meshes, as updated by 'Meshing'

in real-time. The results are delineated in Table 1. Although

the minimum method time was observed to be relatively

constant across methods, the proposed method's maximum

elapsed time was discerned to be up to 1100 times swifter.

(a) Original

(b) Hole - Finding

(c) Hole – Filling

Figure 7. Depiction of a blind spot unreachable within the

mobile device

1380

(a) Hole-Finding: 1 msec, Hole-Filling: 3 msec

(b) Hole-Finding: 3 msec, Hole-Filling: 4 msec

(c) Hole-Finding: 2 msec, Hole-Filling: 3 msec

(d) Hole-Finding: 2 msec, Hole-Filling: 3 msec

Figure 8. ‘Hole-Finding’ and ‘Hole-Filling’ in different situations

The heightened performance exhibited by the proposed

method is attributed to the avoidance of existing algorithms

known for their cubic-time complexity, which are

conventionally employed to attain elevated quality. This

deviation from conventional methodology underpins the

accelerated operation of the proposed algorithm, highlighting

its viability for real-time applications.

1381

Table 1. Performance metrics of the proposed method

Unit: μsec Minimum Maximum Average

Proposed Method 1 112 7

Peter [14] 1 123205 6879

Park et al. [17] 1 10507 507

4.2 Application in a game environment using the proposed

method

This subsection elucidates an application of the proposed

method within a gaming context.

As demonstrated in Figure 9, the rapid hole-filling enabled

by the proposed algorithm effectively addresses a critical

problem in game development: the escape of game objects

through undetected holes. A visual representation of this issue,

as well as the method’s resolution, is documented in a video

available at https://youtu.be/eZw8CK49MUQ.

Figure 10 further delineates this process. The sub-figures on

the left side display the game environment with original

meshes, while the center sub-figures emphasize the hole

boundaries with red lines. The right sub-figures portray a game

environment that has been enhanced by the implementation of

the proposed algorithm.

The ingenuity of the proposed algorithm lies in its capacity

to fill holes swiftly, thereby preventing potential disruptions

within the game environment. Its application not only rectifies

visual inaccuracies but also ensures the integrity of the gaming

experience. The rapid identification and subsequent

rectification of holes are imperative for maintaining a seamless

gaming interface.

The practicality of the proposed algorithm in real-world

gaming scenarios illustrates its robustness and adaptability. By

mitigating a common challenge in gaming development, this

method showcases potential for further integration into

various virtual environments.

(a) Original (b) Original marked with holes (c) Hole – Filling

Figure 9. Implementation of the proposed algorithm within a gaming scenario

(a) Characters controlled by the player

(b) Projections of the player

1382

(c) Projections of characters controlled by the player

Figure 10. ‘Hole-Filling’ in different scenarios

5. CONCLUSIONS

In the present study, an algorithm was introduced to address

the prevalent issue of holes within AR content. Comprised of

two main components—Hole-Finding, for the discernment of

real holes from candidate holes by excluding outer lines, and

Hole-Filling, for the rectification of the identified holes—the

proposed method was systematically evaluated.

The evaluation process included scanning spaces where the

limitations of conventional AR Foundation could be distinctly

observed. A comparison was made between the performance

of the proposed method and the original meshing mechanism,

which often failed to generate meshes in blind spots, resulting

in a multitude of large and small holes. In stark contrast, it was

found that the proposed method was adept at recovering these

holes, efficiently supporting real-time requirements. Notably,

the proposed method outperformed existing studies by

approximately 1,100 times, highlighting its suitability for

performance-critical applications such as gaming.

This research represents a pioneering effort to address the

hole problem in AR content on real mobile devices. While the

proposed method effectively fills individual mesh holes, a

recognized limitation is its inability to fill the empty spaces

between different meshes. Future work aims to refine this

method, leveraging extracted outer lines from the Hole-

Finding process to connect meshes, thus enhancing the overall

quality of the AR experience.

The implications of this study extend beyond gaming,

offering potential applications in diverse AR content. By

enabling the creation of more dynamic and varied content, the

proposed method contributes significantly to the advancement

of AR technology. This investigation thus serves as a

foundation for further exploration and development in the field,

providing insights that can be applied to a wide range of virtual

environments.

ACKNOWLEDGMENT

To increase the understandability of the hole problem and

our solution, the authors have created a video and uploaded it

to https://youtu.be/eZw8CK49MUQ. This work was

supported by the National Research Foundation of Korea

(NRF) grant funded by the Korea government (MSIT) (NRF-

2023R1A2C1005950).

REFERENCES

[1] Fiala, M. (2005). ARTag, a fiducial marker system using

digital techniques. 2005 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition

(CVPR'05), San Diego, CA, USA, pp. 590-596.

https://doi.org/10.1109/CVPR.2005.74

[2] Zhang, B. (2017). Design of mobile augmented reality

game based on image recognition. EURASIP Journal on

Image and Video Processing, 2017(1): 1-20.

https://doi.org/10.1186/s13640-017-0238-6

[3] Kim, H.H., Jung, H.W. (2017). Markerless augmented

reality game development method utilizing the Unity

engine and KUDAN engine -In the center of the

development case of ‘Our neighborhood hero’. Journal

of Digital Convergence, 15(4): 421-426.

https://doi.org/10.14400/JDC.2017.15.4.421

[4] Bang, J.S., Lee, D.C., Seo, S.H., Kim, Y.J., Lee, H.J.,

Son, W.H. (2016). Trends of VR/AR game technology.

Electronics and Telecommunications Trends, 31(1): 146-

156.

[5] Joo, E.R., Chung, J.H. (2019). A study on the mobile

augmented reality of game Pokemon Go. Journal of

Digital Convergence, 17(12): 473-480.

https://doi.org/10.14400/JDC.2019.17.12.473

[6] Oufqir, Z., Abderrahmani A. El, Satori K. (2020). ARKit

and ARCore in serve to augmented reality. International

Conference on Intelligent Systems and Computer Vision

(ISCV), Fez, Morocco, pp. 1-7.

https://doi.org/10.1109/ISCV49265.2020.9204243

[7] Feigl, T., Porada, A., Steiner, S., Loeffler, C., Mutschler,

C., Philippsen, M. (2020). Localization Limitations of

ARCore, ARKit, and Hololens in Dynamic Large-scale

Industry Environments. VISIGRAPP.

[8] Han, T.W. (2018). A study on the development direction

of augmented reality games. The Treatise on The Plastic

Media, 21(4): 283-292.

[9] Cho, N.J., Wang, Y.R., Jung, E.J., Yu, G.S. (2021).

Factors influencing the intention for continuous use of

augmented reality games: Immersion as a mediating

variable. Journal of Information Technology

Applications & Management, 28(6): 1-21.

[10] Kim, K.S., Park, J.S. (2021). Constructing AR game

space through cuboid detection in indoor environment.

Journal of Korea Game Society, 21(5): 3-15.

https://doi.org/10.7583/jkgs.2021.21.5.3

1383

[11] Lee, W.J., Park, J.S. (2019). Improvement of plane

tracking accuracy in AR game using magnetic field

sensor. Journal of Korea Game Society, 19(5): 91-101.

[12] Guo, X., Xiao, J., Wang, Y. (2018). A survey on

algorithms of hole filling in 3D surface reconstruction.

The Visual Computer: International Journal of Computer

Graphics, 34(1): 93-103. https://doi.org/10.1007/s00371-

016-1316-y

[13] Sobhiyeh, S., Dechenaud, M., Dunkel, A., LaBorde, M.,

Kennedy, S., Shepherd, J.A., Heymsfield, S.B.,

Wolenski, P.R. (2019). Hole filling in 3D scans for

digital anthropometric applications. 2019 41st Annual

International Conference of the IEEE Engineering in

Medicine and Biology Society (EMBC), Berlin,

Germany, pp. 2752-2757.

https://doi.org/10.1109/EMBC.2019.8856713

[14] Peter, L. (2003). Filling holes in meshes. SGP '03:

Proceedings of the 2003 Eurographics/ACM

SIGGRAPH Symposium on Geometry Processing, pp.

200-205. https://doi.org/10.2312/SGP/SGP03/200-206

[15] Xia, C., Zhang, H. (2017). A fast and automatic hole-

filling method based on feature line recovery. Computer-

Aided Design and Applications, 14(6): 751-759.

https://doi.org/10.1080/16864360.2017.1287677

[16] Feng, C., Liang, J., Ren, M., Qiao, G., Lu, W., Liu, S.

(2020). A fast hole-filling method for triangular mesh in

additive repair. Applied Sciences, 10(3): 969.

https://doi.org/10.3390/app10030969

[17] Park, J.H., Park, S., Yoon, S.H. (2020). Parametric

blending of hole patches based on shape difference.

Journal of the Korea Computer Graphics Society, 26(3):

39-48. https://doi.org/10.15701/kcgs.2020.26.3.39

1384

