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The classification of mammographic tumors from medical imagery, a critical step in 

pathology detection and diagnosis, is addressed in this study. A novel supervised hybrid 

model that integrates deep learning and machine learning techniques is proposed for the 

classification of semantically relevant tissue areas. This new approach seeks to overcome 

the prevalent issue of suboptimal accuracy in conventional mammography tumor prediction 

methods. In the initial stage, an architecture akin to VGGNet19, EfficientNetB7, 

InceptionV3, ResNet152, DenseNet201, and MobileNetV2 Convolutional Neural Networks 

(CNNs) is employed, serving as an automatic feature extractor from medical images. These 

extracted features are then learned by various classifiers, including K-Nearest Neighbor 

(KNN), Random Forest (RF), AdaBoost, Support Vector Machine (SVM), and Xgboost, 

for mammographic tumor classification. This study identifies the most effective CNN 

model for the intended task. Statistical results demonstrate that the combination of pre-

trained CNN models and supervised classification algorithms can significantly enhance 

efficiency in medical image analysis, particularly in mammographic tumor detection. The 

proposed model, dubbed EfficientNetB7-Xgboost, utilizes the EfficientNetB7 CNN model 

for feature extraction and the Xgboost algorithm for classification. However, 

hyperparameters settings can impact the performance of the EfficientNetB7-Xgboost 

model. To address this, the Cuckoo Search (CS) algorithm is employed in the subsequent 

stage to optimize Xgboost hyperparameters. This method is chosen for its known 

proficiency in eschewing local minimum values, a common issue with conventional 

parameter optimization approaches. The proposed EfficientNetB7-CS-Xgboost model's 

performance is validated using mammography data from the DDSM and MIAS datasets. 

Evaluation metrics include precision, recall, accuracy, and the f1-score. The results are 

compared against those obtained using EfficientNetB7-Xgboost in conjunction with the 

particle swarm optimization approach. Experimental findings indicate that coupling 

EfficientNetB7-Xgboost with the CS algorithm yields superior mammographic tumor 

prediction results compared to previous models. 
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1. INTRODUCTION

Breast cancer, recognized as the most prevalent cancer in 

women and the second leading cause of cancer-related deaths, 

necessitates an urgent need for robust and efficient diagnostic 

methods. Mammography, a widely utilized medical imaging 

technique, has proven instrumental in early diagnosis, thereby 

improving treatment outcomes. However, the escalating 

volume of mammography images demands swift and precise 

classification methods for effective large-scale population 

screening. This paper seeks to address this pressing need by 

proposing an advanced image classification model leveraging 

both deep learning and machine learning algorithms [1, 2]. 

Contemporary classifiers such as Support Vector Machine 

(SVM) [3], K-nearest neighbor (KNN) [4, 5], Random Forest 

(RF) [6], AdaBoost [7], Xgboost [8], and Convolutional 

Neural Network (CNN) [9] have demonstrated significant 

efficacy in medical image classification. Nevertheless, the 

complexity and diversity of medical image data perpetually 

challenge these methods, underscoring the need for refinement. 

Deep Neural Networks (DNNs), capable of intricate 

function approximation, have shown promise in various 

domains including facial recognition, object detection, and 

image classification. Their ability to efficiently extract 

features and perform classification elucidates their potential 

applicability in mammographic image classification. However, 

their complex structure, training difficulty, and high 

processing costs often impede their efficient implementation. 

In conventional medical image classification tasks, feature 

extraction is a crucial yet time-consuming process, with the 

quality of extracted features dramatically impacting 

classification performance. CNN, a type of DNN, has excelled 

in feature extraction for various applications such as sentiment 

classification [10], demonstrating its potential for 

mammographic image classification. However, traditional 

classifiers linked to CNN often fail to comprehend the 

extracted features fully, thus limiting classification accuracy. 

Addressing these challenges, our study's first contribution is 

the integration of a CNN model and a machine learning 

algorithm, both exhibiting exceptional performance in medical 
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image classification. We evaluate several pre-trained CNN 

models, including VGGNet19 [11], EfficientNetB7 [12], 

InceptionV3 [13], ResNet152 [14], DenseNet201 [15], and 

MobileNetV2 [16], in tandem with various classifiers such as 

KNN, SVM, AdaBoost, Xgboost, and RF for tumor 

classification in mammography images. 

The experimental results, in the validation process of the 

optimal CNN model, show that the EfficientNetB7 model 

obtains the highest scores among all the pre-trained models 

used in combination with the Xgboost algorithm in the 

automatic medical image classification process. The results of 

this first study involve a novel image classification model 

called EfficientNetB7-Xgboost to increase the performance of 

medical image classification. The proposed model achieves 

improved results by incorporating EfficientNetB7 as a 

trainable feature extractor to automatically get features from 

the input and using Xgboost as a high-level recognition 

network to generate results. This two-step model ensures 

efficient feature extraction and classification. 

However, in a machine learning model, their parameters 

affect their effectiveness to a large extent. Indeed, the Xgboost 

model has many hyperparameters and human experience is 

required to determine the optimal parameters, which increases 

the difficulty of the model. Nevertheless, the learning 

efficiency and generalization ability of Xgboost is related to 

the selection of appropriate parameters. The parameters have 

a direct impact on the efficiently of the model predictions. 

Therefore, evolutionary algorithms may be the solution to this 

challenge. In fact, particle swarm optimization [17], genetic 

algorithm [18], and ant colony algorithm [19] have been 

approved to improve the parameters of Xgboost model. 

However, the particle swarm optimization model and the 

genetic algorithm fall quickly into local extremes. The three 

principal limitations of the algorithm are the exploration ratio, 

the stagnation stage and the convergence speed of the 

algorithm. On the other hand, recently, the cuckoo search 

algorithm (CS cuckoo search) is an evolutionary algorithm 

proposed [20]; it has the advantage of strong global search 

capability, few parameters and a nice search path and it is 

efficient to solve multi-objective problems. Motivated by the 

above facts, the second contribution of this article is the 

combination of the CS algorithm and the Xgboost algorithm 

to optimize the hyperparameters of Xgboost. 

In this paper, a tumor mammography prediction model 

based on EfficientNetB7-CS-Xgboost is proposed. The 

principal contributions of this paper are as follows: 

- To make a comparative analytical study of several 

pre-trained CNN architectures as feature extractors for 

mammography image analysis combined with the several 

classifiers to propose the best classifier in the given 

classification domain. The new model is called the 

EfficientNetB7-Xgboost model. 

- The development of a new EfficientNetB7-CS-

Xgboost model with Xgboost using CS to optimize its 

parameters. This can practically improve the efficiency of 

mammography tumor classification, including improving the 

detection accuracy of various tumor types. 

- To evaluate the performance of the EfficientNetB7-

CS-Xgboost model, the global set of metrics are used and 

compared with Xgboost and other ensemble learning models 

EfficientNetB7-PSO-Xgboost. The evaluation is based on two 

datasets. 

Section 2 of this paper discusses related work, while Section 

3 provides a detailed description of the proposed algorithm. 

Section 4 details the mammography image datasets used, 

presents the analysis results, and highlights some limitations 

of our approach. Section 5 concludes the paper and suggests 

potential future directions. 

 

 

2. RELATED WORK 

 

The current landscape of medical image analysis has been 

significantly transformed by the advent and growth of machine 

learning methodologies, particularly Convolutional Neural 

Networks (CNNs). Ker et al. [21] underscored the potential of 

CNNs in automatically discovering meaningful hierarchical 

relationships within data, thereby eliminating the need for 

manual feature extraction. They comprehensively explored the 

primary research areas and applications of medical image 

analysis, including classification, detection, segmentation, 

registration, and localization. 

A trend observed in this field is the utilization of pre-trained 

CNNs in conjunction with supervised classification algorithms 

for medical image analysis. Varshni et al. [22] proposed a two-

step approach in which pre-trained CNN models were initially 

employed for feature extraction, followed by the application 

of various classifiers for distinguishing between normal and 

abnormal chest radiographs. Their investigation showed that 

the combination of DenseNet-169 and the Support Vector 

Machine (SVM) algorithm was optimal, especially for 

pneumonia detection in chest X-ray images. 

Building on the idea of feature extraction through CNNs, 

Dubrovina et al. [23] suggested using convolutional layers 

instead of conventional fully connected layers to expedite the 

class prediction process at the pixel level. Their method, 

validated on annotated mammography images, demonstrated 

promising results in tissue classification and image 

segmentation. 

An essential aspect of the feature extraction process is the 

validation of extracted characteristics before their submission 

to classification. Arevalo et al. [24] emphasized this factor in 

their study, demonstrating that their model outperformed 

previous models by achieving an area under the Receiver 

Operating Characteristic (ROC) curve between 79.9% and 

86%. 

To enhance the accuracy of trained CNN models and reduce 

the re-training time, Lee et al. [25] proposed a model 

comprising two phases: feature generation via a CNN model 

and subsequent application of the AdaBoost algorithm to 

combine Softmax classifiers into recognizable images. This 

work underscored the potential of combining CNNs with the 

AdaBoost algorithm to improve image analysis performance. 

Following these works, it is noticeable that several studies 

combined CNN models with machine learning approaches for 

improved results. For example, Varshni et al. [22] employed 

the SVM algorithm for classification, while Lee et al. [25] 

utilized the AdaBoost algorithm. The present study adopts the 

enhanced AdaBoost algorithm, known as XGBoost, for the 

classification stage, evaluated through a series of experiments. 

Nevertheless, the efficacy of the XGBoost algorithm is 

largely dependent on its parameters. Efforts have been made 

to optimize these parameters, as in the study by Zhang et al. 

[26], where a Particle Swarm Optimization (PSO) was 

performed to improve the XGBoost hyperparameters. The 

proposed PSO-XGBoost model outperformed other models in 

predicting explosion-induced peak particle velocity (PPV). 

Other approaches [27], have used the genetic algorithm in 
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tandem with XGBoost to improve model parameters. The 

authors of this study proposed a novel algorithm for pedestrian 

detection in images, involving the description of pedestrians 

by tandem fusion by Histogram of Oriented Gradients (HOG) 

and Local Binary Patterns (LBP) features, followed by the 

application of the Genetic Algorithm-XGBoost (GA-XGBoost) 

algorithm. 

Motivated by the efficiency of the Cuckoo Search algorithm 

in optimization problems, this study proposes its combination 

with the XGBoost algorithm, detailed in the following section. 

The hybridization of the Cuckoo Search algorithm and 

XGBoost aims to enhance classification efficiency. 

 

 

3. THE PROPOSAL METHOD 

 

The objective of this section is to present the novel approach 

and evaluate the results. This study consists of classification 

of mammography images that detects abnormalities at an early 

stage. This section experiments with transfer learning using 

pre-trained convolutional neural network models and some 

classifiers to enhance the accuracy of results. 

 

 
 

(a) 1st Contribution: A comprative study 

 

 
 

(b) 2nd Contribution: Optimized cuckoo search 

 

Figure 1. The proposed approach framework 

The image dataset and the process used to classify 

mammograms into two classes (positive and negative) are 

shown in Figure 1 and are presented in detail in the next sub-

sections. In the first sub-section, a description of the images 

acquired from the Mammographic Institute Society Analysis 

(MIAS) and Breast Cancer Image (CBIS-DDSM) datasets is 

provided and the preprocessing applied to these images is 

described. The objective of the second sub-section is to test 

some methods and approaches in order to establish a 

comparative table showing the accuracy rates of each method, 

which is the first contribution of this paper (see Figure 1 (a)). 

Finally, the third sub-section presents the Xgboost classifier 

optimized with the Cuckoo search algorithm which is the 

second contribution of this study (see Figure 1 (b)). 
 

3.1 Datasets preprocessing 
 

3.1.1 DDSM mammography dataset 

The dataset is composed of images from the DDSM [28] 

and CBIS-DDSM: Breast Cancer Image Dataset [29] 

databases. The images were preprocessed and transformed to 

299×299 images by extracting the ROIs. The data are saved in 

tfrecords files for TensorFlow. The data set which includes 

55,890 training examples (14% positive, 86% negative) are 

saved in 5 tfrecords files. 

The data was split into training and test data. However, this 

split was done improperly, since the test nimpy files include 

only masses and the validation files include only calcifications. 

Therefore, these files must be used together to obtain complete 

and balanced test data. 
 

- Preprocessing 

The dataset is the combination of positive images from the 

CBIS-DDSM data and negative images from the DDSM data. 

These data were pre-processed to be converted to 299×299 

images. The negative images (DDSM) were divided into 

598×598 tiles and resized to 299×299. 

The ROIs from the positive images (CBIS-DDSM) were 

selected using the masks with a small amount of fill to obtain 

context. Each one of the ROIs was then randomly cropped 

thrice into 598×598 images with random flipping and rotation, 

and resized to 299×299 to pass them into the CNN models. 

The images are annotated with two stickers: 

- Stickers normal 0 for negative and 1 for positive. 

- Stickers complete multiclass labels, 0 for negative, 1 for 

benign calcification, 2 for benign mass, 3 for malignant 

calcification, 4 for malignant mass. 

 

3.1.2 MIAS 

The Mammographic Institute Society Analysis (MIAS) 

database [30] has mammogram images with a size of 

1024×1024 pixels and a resolution of 200 microns. It included 

322 mammograms of the right and left breasts of 161 patients, 

of which 54 were diagnosed as malignant, 69 as benign, and 

207 as normal. It included also a file that lists the 

mammograms in the MIAS database and achieves appropriate 

details, such as the class of abnormality, the xy coordinates of 

the image of the center of the abnormality, the approximate 

radius (in microns) of the abnormality, and the approximate 

radius (in pixels) of a circle surrounding the abnormality. Site 

anomalies are classified according to the type of anomaly 

found (circumscribed masses, calcification, distortions of 

circumscribed masses, asymmetries, architectural distortions 

and other well-defined masses). Table 1 shows the column 

details. 
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Table 1. MIAS database description 

 
Column Detail 

1st MIAS Database reference number 

2nd  

Character of background tissue: 

F-Fatty 

G-Fatty-glandular 

D-Dense-glandular 

3rd 

Class of abnormality present: 

1 CALC-Calcification 

2 CIRC-Well-defined/circumscribed masses 

3 SPIC-Spiculated masses 

4 MIS-Other, ill-defined masses 

5 ARCH-Architectural distortion 

6 ASYM-Asymmetry 

7 NORM-Normal 

4th 

Severity of abnormality; 

B- Benign 

M-Malignant 

5th, 6th X y image-coordinates of center of abnormality 

7th 
Approximate radius (in pixels) of a circle enclosing the 

abnormality 

 

- Preprocessing 

Data augmentation: Rotating the images 8 degrees 45 times. 

These transformations are one of the general principles of 

training scalable networks with small data sets. Finally, all 

images were resized to 224×224 to run in the CNN models. 

 

3.2 Comparative study between CNN architectures and 

classification algorithms 

 

This study consists of two essential parts, starting with 

feature extraction from mammography images by applying 

different CNN architectures. Then, the classification of the 

feature vector obtained in the previous step using different 

machine learning algorithms to obtain the corresponding class 

(Figure 2). 

 

 
 

Figure 2. Comparative study of classification algorithms 

 

3.2.1 Feature extraction 

This step consists in extracting from the mammography 

images the features that will be used in the classification step. 

Indeed, this operation is a difficult task that needs a high 

expertise level and requires a lot of work and time. In addition, 

the solutions may not be representative because the 

characteristics obtained are problem specific. In deep neural 

network models, feature extraction is done automatically by 

the layers of the CNN. Indeed, the basic features (such as: 

edges and contours) are generated by the lower layers, while 

information about the color and shape of the image are 

obtained by the intermediate layers. In addition, these 

networks include a fully connected layer for classification. In 

this work, this fully connected layer is removed in order to 

obtain a feature vector as output of the network. Hence, the 

role of the CNN is limited to extracting features automatically 

only (see Figure 2). The selected architectures to perform the 

experiment are EfficientNetB7, vgg19, InceptionV3, 

ResNet152, DenseNet201 and MobileNetV2. The pre-trained 

weights that were performed to the networks were trained on 

the ImageNet database. 

 

3.2.2 Features classification 

This experiment consists of six cases. 

The first case implements the Xgboost classifier on the 

mammogram features extracted from the CNN model. The 

parameters applied in this case are the default parameters. 

The second case implements the SVM classifier on the 

CNN features of the mammograms. The SVM maps the input 

vector of data to a higher dimensional feature space where a 

maximum margin hyperplane is built. This case uses the 

default parameters of SVM. 

The third case utilizes the fully connected (dense) layer with 

the Softmax activation function on the CNN in order to 

distinguish between positive and negative mammograms. 

The fourth case applies the Random Forest (RF) classifier 

on the mammogram features extracted from the CNN. RF is a 

learning method that applies the average prediction score of a 

single tree in a combination of multiple decision trees. The 

settings applied in RF are the default settings. The fifth case 

applies the AdaBoost classifier in addition to the CNN features. 

The AdaBoost algorithm is a sequential boosting ensemble 

learning method in which each weak classifier is modified 

based on the instances misclassified by all previous classifiers. 

Its final Decision is the weighted sum of the scores of the 

results of a combination of the final classifiers. In AdaBoost 

algorithm the decision tree is applied as the base classifier and 

the parameters applied are the default parameters. The sixth 

case applies the K nearest neighbors (KNN) to classify the 

target points (unknown class) based on their distance from the 

points making up a training sample. 

 

3.3 Optimization Xgboost 

 

3.3.1 Training process of Xgboost 

After the feature extraction step, several classifiers such as 

Random Forest, Support Vector Machine, etc. were performed 

for the classification task. But in this paper, the best results 

were found with Xgboost model as the classifier for the 

problem. The description of the XGBoost [31] core is as 

follows: 

Let D = {(xi, yi)}(|D| = n, xi ∈ ℝ
m, yi ∈ ℝ

n)  describes a 

dataset with n examples and m features. 

Eq. (1) consists of a tree boosting model output ŷi with K 

trees [32]. 

 

ŷi =∑fk(xi), fk ∈ F

K

k=1

 (1) 

 

where, F = {f(x))ωq(x)}(q: ℝ
m → T,ω ∈ ℝT)  is the spatial 

regression or classification trees. Each fk splits a tree into 

structure part q and leaf weights part ω. T is the number leaves 

in the tree. 

To minimize the following objective function [32], the tree 

model functions fk can be learned: 
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𝔏(t) =∑l(yi

n

i=1

, ŷi
(t−1) + ft(Xi)) + Ω(ft) (2) 

 

where, the term l in Eq. (2) is a training loss function which 

measures the distance between the prediction ŷi and the object 

yi. And Ω represents the penalty term of the tree model 

complexity [32]. 

 

Ω(ft) = γT +
1

2
λ∑ωj

2

T

j=1

 (3) 

 

Xgboost approximates Eq. (2) using the second order 

Taylor expansion and the final objective function at step t can 

be simplified as [32]: 

 

𝔏(t) ≃∑l(yi

n

i=1

, ŷi
(t−1)

+ gift(Xi) +
1

2
hift

2(Xi)) + Ω(ft) (4) 

 

where, gi and hi are the first and the second order gradient 

statistics on the loss function [32]. 

 

gi = ∂
ŷi
(t−1)l(yi, ŷi

(t−1)), hi = ∂2
ŷi
(t−1)l(yi, ŷi

(t−1)) (5) 

 

After removing the constant term and expanding Ω, Eq. (4) 

can be rewritted as [32]: 

 

𝔏(t)̃ =∑[gift(Xi) +
1

2
hift

2(Xi)]

n

i=1

+ γT +
1

2
λ∑ωj

2

T

j=1

 

=∑[(∑gi
i∈lj

)ωj +
1

2
(∑hi + λ

i∈lj

)ωj
2] + γT

T

j=1

 

(6) 

 

The term weight ωj
∗ of leaf j for a fixed tree structure q(x) 

can be achieved by performing the following equation [32]: 

 

ωj
∗ = −

∑ gii∈lj

∑ hi + λi∈lj

 (7) 

 

After replacing ωj
∗ into Eq. (6) [32]: 

 

𝔏(t)
∗̃
= −

1

2
∑

(∑ gii∈lj
)
2

∑ hi + λi∈lj

+ γT

T

j=1

 (8) 

 

where, 

T: the number of leaf nodes, 

And γ: the coefficient of this term, 

Eq. (8) describes the scoring function to measure the tree 

structure q(x) and to identify the optimal tree structures for 

classification. However, it is impractical to find all possible q-

trees in practice. 

 

3.3.2 Based optimizing process of Xgboost with CS 

 The cuckoo search algorithm 

Motivated by the peculiar lifestyle of cuckoo species and 

Levy flight, Yang and Deb [20] presented Cuckoos lay their 

eggs in the nests of other birds when the host birds abandon 

the nest unattended. In reality, some of these eggs are similar 

to the host bird's eggs, hatch, and develop into adult cuckoos. 

If the host birds detect that these eggs are not their own, they 

reject the foreign eggs or leave the nest and find a new location 

to build a novel nest. The cuckoo egg provides a novel solution 

among all the eggs in a nest. The goal of the CS algorithm is 

to apply the new potentially better solutions to substitute for 

the less good solutions in the nests. The CS algorithm is based 

on the following three rules [33, 34]: 

1) Each cuckoo lays only one egg (one solution) at a time 

and deposits them in a randomly chosen nest. 

2) Among these nests, the best nest with high quality eggs 

will be passed on to the next generation. 

3) In case the host bird finds a foreign egg in its nest with a 

probability, it leaves its nest and builds another nest in another 

place. 

The CS algorithm updates the locations of bird nests based 

on the above three rules. Its path of research can be expressed 

as follows: 

 

Xi
t+1 = Xi

t + α⨁L (9) 

 

where, Xi
t denotes at iteration t the position of the ith nest. The 

product ⨁ defines the multiplication by the input, and α is the 

step size, which follows to a normal distribution. L is the Levy 

random search path defined as follows: 

 

L = 0.01 ×
μ

|ν|1/β
× (gbest − Xi

t) (10) 

 

where, gbest describes the best nest. When µ, ν follow a normal 

distribution, μ~N (0,δμ
2 , ν~N (0,δμ

2), where, β=1.5: 

 

{
 
 

 
 
δμ = {

Γ(1 + β)sin (πβ/2)

Γ[(1 + β)/2]β2(β−1)/2
}

1/β

δν = 1

 (11) 

 

Compared to other metaheuristic approaches, the CS 

algorithm has two advantages. The first is that it can more 

effectively maintain stability between the local search strategy 

and the global search strategy. The second is that it has only 

two hyperparameters (the egg detection probability pa and the 

population size N). For N is fixed, pa checks the balance 

between local search and random search. Since the CS 

algorithm has less parameter than other metaheuristic 

algorithms, it is significantly better [20]. 

 

 Xgboost hyperparameters optimization based on Cuckoo 

Search (CS) 

The categories of the parameters of the Xgboost algorithm 

are: general parameters, booster parameters, and learning 

target parameters. In this study, only six key parameters are 

concerned which are: learning rate (eta), maximum tree depth 

(max-depth), minimum leaf weight (min-child-weight), 

gamma, subsample and col-sample-bytree. The details of these 

parameters are presented in Table 2. 

The process of the CS-Xgboost algorithm is described in the 

flowchart in Figure 3. It is applied to optimize the Xgboost 

parameters (eta, max-depth, min-child-weight, gamma, sub-

sample and col-sample-bytree) as follows: 

Set up the cuckoo search algorithm and define the number 

of nests, N, the probability parameters, pa, the maximum 

number of iterations, tmax, and the ranges of (eta, max-depth, 
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min-child-weight, gamma, sub-sample, and col-sample-

bytree). The initial Xgboost parameters are determined by the 

following function: 

 

Table 2. Key parameters of the Xgboost algorithm 

 

Parameter range 
Default 

value 
Description 

Eta [0,1] 0.3 Reduce weight at every stage 

Min-Child-

Weight 
[0, ∞] 1 The minimum weight sum 

Max-depth [0, ∞] 6 Overfitting check 

Gamma [0, ∞] 0 
The minimum loss necessary to 

perform a fractionation 

Sub-sample [0,1] 1 
Check the proportion of the 

sample 

Col-sample-

bytree 
[0,1] 1 Column split of random samples 

 

 
 

Figure 3. The process of the CS algorithm for Xgboost 

parameter selection 

 

x = L + rand ∗ (U − L) (12) 

 

The dimensions are calculated according on the number of 

the optimized parameters and the positions and velocities of 

the particles are randomly initialized. Each particle is located 

by the position attribute as a 6-dimensional vector and its 

range in the search space. Each dimension corresponds to 

several parameters of Xgboost initialized with different value 

ranges. At time t the position vector of the i-th particle is 

defined as follows: 

 
Pi(t)

= [Pi(t)
eta, Pi(t)

max−depth
, P
i(t)

min
childweight

, Pi(t)
gamma

, Pi(t)
subsample

, P
i(t)

colsamplebytree
] 

(13) 

The position vector is then affected to the appropriate 

parameters of the model and the initial value of the fitness 

function is initialized by the model performance on the 

training set. At time t, the fitness value of the i-th particle is: 

 

Fi(t) = (Pi(t) → Xgboost|trainingset) (14) 

 

For each nest, compute and verify the fitness value and find 

the current best solution and save the maximum fitness value 

and its position. For the i-th particle at time t, its individual 

optimum is defined as follows: 

 

Pbesti(t) = max(Fi(j)) , 0 ≤ j ≤ t (15) 

 

Record the best solution of the last generation and compute 

the position of the other nests. Then check the fitness value of 

the novel position. Let m particles at time t, the global 

optimum is defined as: 

 

Gbest(t) = max(Pbestk(t)) , 1 ≤ k ≤ m (16) 

 

Calculate the random number that corresponds to the 

probability of detecting the egg. Verify it with pa, if 

random >pa, calculate the wireless nest position to get a novel 

set of positions. Identify out the best nest position; stop 

criterion when the maximum iteration is obtained, and get the 

best position to reach the optimal value of the parameter; 

otherwise, go back to step 2. 

 

 

4. RESULTS AND DISCUSSION 

 

This section describes the different experiments conducted 

in order to propose the optimal model for the mammography 

detection problem. 

 

4.1 Experimental facility 

 

Table 3 describes the software and the hardware of the 

machine. Tensor Flow deep learning library is used for 

training. In fact, the first column is the tools used in the test 

and training images and the last column is description of 

several items. 

 

Table 3. Computer hardware and software 

 
Item Content 

Intel® 

DevCloud for 

oneAPI 

-CPUs 

Intel® devcloud. url: 

https://www.intel.com/content/www/us/en/develop

er/tools/devcloud/overview.html 

-Intel® Xeon® Gold 6348 

-RAM -192GB 

Tensorflow 

Tensorflow. Models/README.md at master 

Tensorflow/models.Mai 2020.url: 

https://github.com/tensorflow/models/blob/master/ 

Keras  

Scikit-learn Scikit-learn 

Python Python 3.5 

 

4.2 Machine learning algorithm evaluation criteria 

 

In this study and to validate the model, four evaluation 

criteria are used which are: Accuracy, precision, recall and F-

value (F1-score). They are used in the confusion matrix 

defined in Table 4: 
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Table 4. Confusion matrix 

 

Classification 

results 

Current 

positives 

Current 

negatives 

Positive results 

Negative results 

TP 

FN 

FP 

TN 

 

The positive and negative examples of correct classification 

and of misclassification are noted by: TP (True Positives), TN 

(True Negatives), FP (False Positives), FN (False Negatives), 

respectively. 

 

Precision: 

 

Precision =
TP

TP + FP
 (17) 

 

Precision is the ratio of positive cases that are correctly 

judged as such. 

 

Accuracy: 

 

Accuracy =
TP + TN

TP + TN + FP + FN
 (18) 

 

Accuracy describes the performance of the model for all 

classes. It is relevant when all classes are of similar importance. 

It is defined as the proportion between the number of correct 

and total predictions. 

 

Recall: 

 

Recall =
TP

TP + FN
 (19) 

 

Recall is the rate between the positive cases that are 

correctly predicted and the total number of positive cases. 

 

F-Value: 

 

F − Value =
(1 + β2) × Precision × Recall

β² × Precision + Recall
× 100 (20) 

 

The F-value is a combination of the precision and the recall. 

When β=1, it is the F1-score. 

 

4.3 Experimental results 

 

To validate the method of this study, the comparative study 

of the hybrid CNN-Learning Machine model (case 01) and a 

hyperparameter optimization of Xgboost with the CSO model 

(case 02) are presented in the following section. 

 

4.3.1 Case 01: Comparative study 

Figure 2 shows the experimental process in effect for the 

pre-trained CNN models including ResNet-152, VGG-19, 

DenseNet201, InceptionV3, EfficientNetB7 and 

MobileNetV2, Figure 4 to Figure 11 evaluate their 

performance assisted by several classifiers including K-

nearest neighbors (KNN), Support Vector Machine (SVM), 

AdaBoost, Random Forest (RF), Xgboost, and Softmax in the 

process of classifying tumors in mammography images. 

This section compares the Xgboost algorithm with 

commonly used learning models, such as Random Forest, 

Adaboost, Support Vector Machine (SVM), K-nearest 

neighbors (KNN) and CNN, to validate the model. The 

experiment always uses four measures (F1-Score, Recall, 

Accuracy and Precision) as the evaluation of the classifier. 

Figure 4 and Figure 5 show the results of the comparison. It 

was shown that the EfficientNetB7 model combined by the 

Xgboost classifier outperforms all other pre-trained CNN 

models among the two datasets (MIAS and DDSM) for all F1-

Score values (0.92 for the MIAS dataset and 0.93 for the 

DDSM dataset). On the other hand, the ResNet-152 model 

performs very closely to the EfficientNetB7 model. It is 

observed that the VGG19 model outperforms the 

EfficientNetB7 model combined with the Random Forest 

classifier on the MIAS dataset. 

It is also shown that the DensNet201 model provides 

interesting results (0.93) on the DDSM dataset at the same 

level as the EfficientNetB7 model. This can be explained by 

the large number of layers in both models. 

 

 
 

Figure 4. Results F1-score for MIAS dataset 

 

 
 

Figure 5. Results F1-score for DDSM dataset 

 

 
 

Figure 6. Results accuracy for MIAS dataset 
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Figure 7. Results accuracy for DDSM dataset 

 

Figure 6 and Figure 7 describe the results of the comparison. 

It was shown that the EfficientNetB7 model combined with 

the Xgboost classifier outperforms all other pre-trained CNN 

models among the two datasets (MIAS and DDSM) for all 

accuracy values. On the other hand, the ResNet-152 model 

performs very closely to the EfficientNetB7 model. It is 

observed that the VGG19 model exceeds the EfficientNetB7 

model combined with the Random Forest classifier. 

Figure 8 and Figure 9 show the results of the comparison. It 

was shown that the EfficientNetB7 model combined with the 

Xgboost classifier outperforms all other pre-trained CNN 

models among the two datasets (MIAS and DDSM) for all 

recall values. On the other hand, the ResNet-152 model 

performs very closely to the EfficientNetB7 model. It is 

observed that the VGG19 model exceeds the EfficientNetB7 

model combined with the Random Forest classifier. 

 

 
 

Figure 8. Results recall for MIAS dataset 

 

 
 

Figure 9. Results recall for DDSM dataset 

 
 

Figure 10. Results precision for DDSM dataset 

 

 
 

Figure 11. Results precision for MIAS dataset 

 

Figure 10 and Figure 11 show the comparison results. It was 

shown that the EfficientNetB7 model combined with the 

Xgboost classifier outperforms all other pre-trained CNN 

models among the two datasets (MIAS and DDSM) for all 

precision values. On the other hand, the ResNet-152 model 

performs very close to the EfficientNetB7 model. We observe 

that the ResNet-152 and DenseNet201 models outperform the 

EfficientNetB7 model combined with the Softmax classifier. 

The Xgboost algorithm is the improvement of the Adaboost 

algorithm and it is confirmed by the results in different CNN 

architectures. The SVM algorithm performs well with the 

different CNN models followed by the Xgboost classifier. 

Indeed, their precision, recall, accuracy and F1-score values 

are close to those of Random Forest. On the other hand, the 

Xgboost classifier significantly outperforms the Random 

Forest algorithm and other classification algorithms with the 

different CNN models. The interpretation of the results is 

probably in the fact that it uses the CNN model to 

automatically extract features that describe the image and less 

information lost and the acceptable execution time of the 

Xgboost algorithm to perform the task of classification. These 

important results demonstrate the effectiveness and efficiency 

of the novel image classification approach proposed with the 

CNN-Xgboost model. In fact, EfficientNetB7 has a large 

number of layers compared to other CNN models. We can 

state that the Xgboost algorithm performs well with the CNN 

architecture that the number of layers is large based on the 

residual. 

 

4.3.2 Case 02: Results of the optimization of the hyper 

parameters 

In order to improve the performance of the models, it is 
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performed hyperparameter tuning with the Xgboost classifier. 

It is showed that the process strongly affected the statistical 

results with an improvement in most of the four most 

important measures. The experiment still uses the four 

measures (F1-Score, Accuracy, Precision and Recall) as the 

evaluation of the classifier. In this step, the CS algorithm is run 

with the Xgboost classifier and the CNN EfficientNetB7 

model to optimize the four measures. 

Figure 12 lists only the important combinations of CS and 

Xgboost in the case of the EfficientNetB7 model. The process 

of searching the optimal hyperparameters of the Xgboost 

classifier showed that a significant improvement was observed 

when tuning the hyperparameters in the case of the features 

extracted from the CNN EfficientNetB7 model. 

This section defines some parameters with the best 

performance for experimental comparison and analysis, where 

eta is 0.33, max_depth is 4, min_child_weight is 0.29, gamma 

is 0.03, subsample is 0.31 and colsample_tree is 0.14. Next, 

the EfficientNetB7-CS-Xgboost model is applied to the MIAS 

and DDSM test sets. 

To validate the effectiveness of the EfficientNetB7-CS-

Xgboost model, this sub-section compares this model with the 

EfficientNetB7-PSO-Xgboost and EfficientNetB7-Xgboost 

models. 

Figure 12 shows the variation in the scores of the fourth 

metric against several combinations of the optimization 

algorithm and Xgboost in the case of EfficientNetB7. The 

experimental results demonstrated that EfficientNetB7 (as a 

feature extractor)+Xgboost (as a classifier)+Cuckoo Search 

(as an optimizer) is the ideal model for analyzing the 

mammogram detection task and thus is the custom model 

presented in this paper. 

After performing the above phases to build the model, 

Figure 12 shows the prediction results of MIAS and DDSM 

datasets. The parameters of CS were set as follows: number of 

nests: N=10; nest discovery rate: Pa=0.25; and the maximum 

number of iterations: tmax=20. To demonstrate the performance 

of the proposed method, the particle swarm optimization 

models (EfficientNetB7-PSO-Xgboost) and (EfficientNetB7-

Xgboost) were also trained and implemented. The predicted 

results of these three models were compared and the results of 

the comparison are shown in Figure 12. The PSO [35] 

parameters were set as follows: initial population: N=10, local 

search parameters: C1=1.5; global search parameters: C2=1.7; 

and maximum number of iterations: tmax=20 and inertia weight 

(w)=0.8. 

 

 
 

Figure 12. Results obtained on the two datasets 

Table 5. The optimal hyperparameter for mammography 

images 

 
Parameter Interval F1-score Accuracy Recall Precision 

Eta [0,1] 0.7225 0.1826 0.6250 0.2754 

Min_Child

_Weight 
[0,200] 69 45 80 14 

Max_depth [0,200] 2 3 0 2 

Gamma [0,200] 0.3698 0.9894 0 0.3669 

Subsample [0,1] 0.6568 1 0.4486 0.6545 

Colsample

_bytree 
[0,1] 1 0.6899 1 0.9502 

 

Figure 12 shows that the EfficientNetB7-CS-Xgboost 

model has the highest predictive performance of the both 

models in both data sets. Although the EfficientNetB7-PSO-

Xgboost model has the best prediction performance, the 

prediction histogram of the EfficientNetB7-CS-Xgboost 

model is closer to reality than the prediction histogram of the 

EfficientNetB7-PSO-Xgboost model. The prediction residual 

of the EfficientNetB7-PSO-Xgboost model is higher than that 

of the EfficientNetB7-Xgboost model, but its histogram is still 

relatively small, ranging from 0.01 to 0.10 than that of the 

EfficientNetB7-CS-Xgboost model. The overall results show 

that the four-measure error prediction ability of the 

EfficientNetB7-CS-Xgboost model is better than that of the 

EfficientNetB7-PSO-Xgboost and EfficientNet-Xgboost 

models, indicating that CS is an efficient method for 

hyperparameter optimization among the two data sets. 

The optimal hyperparameters for this study are defined in 

Table 5. This table gives different values of hyperparameters 

for the optimal results. 

Experimental Cases 01 and 02 summarize the results in both 

cases and perform the above experimental to select the best 

model for mammography mass lesion classification. In the 

process of determining the optimal feature extractor among all 

pre-trained CNN models, EfficientNetB7 performed better 

than all other models, followed by the Xgboost classifier with 

the cuckoo search optimization algorithm. 

 

4.4 Discussions 

 

The present study performs the above experimental analysis 

to select the best model for mammography image 

classification. The Xgboost classifier is the improvement of 

the Adaboost algorithm and it is confirmed by the results in 

different CNN architectures. 

In the first stage and according to the experimental results, 

EfficientNetB7 surpassed all other models with the Xgboost 

classifier at default values of hyperparameters. Thus, the 

hyper-parameter optimization process suggested the use of 

EfficientNetB7 to provide a better feature representation. On 

the other hand, the Xgboost algorithm significantly 

outperforms the SVM algorithm and other classifier 

algorithms with the EfficientNetB7 CNN model. Because it 

uses CNN to automatically extract good features with less loss 

of image information and the high speed of Xgboost to achieve 

efficient classification. These important results confirm the 

efficiency of the new image classification method proposed 

with the CNN-Xgboost model. In fact, EfficientNetB7 has a 

large number of layers compared to other CNN models. Based 

on experimental results, the Xgboost algorithm performs very 

well with the CNN model that contains many layers based on 

the residue. Because Xgboost uses weak basic learning models 

into a more robust learner in an iterated fashion. At each 
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iteration of gradient boosting, the remaining will be used to 

adjust the prior predictor to optimize the given loss function. 

Thus, when the number of CNN layers increases, the number 

of stronger learners also increases. In fact, the proposed model 

uses both advantages of the CNN and the Xgboost classifier. 

The strong advantages of CNN are that it can automatically 

extract good features and the high advantages of Xgboost 

classifier are that it can self-correct the weak classifier for 

previous iterations and use them to build the next tree in the 

next iteration. The experimental results confirm these two 

advantages. 

In the second stage, while the result of the Xgboost classifier 

depends largely on the hyper-parameters, it is interesting to 

optimize these hyper-parameters. Some experiments are 

conducted with PSO and CS to verify the effectiveness of 

EfficientNetB7-CS-Xgboost. The experiment always uses the 

EfficientNetB7 model as the pre-trained CNN model. Figure 

12 shows the comparison results and confirms that for both 

datasets (MIAS and DDSM), both EfficientNetB7-CS-

Xgboost and EfficientNetB7-PSO-Xgboost have a better 

detection effect than EfficientNetB7-Xgboost. On the DDSM 

and MIAS datasets, the performance difference between 

EfficientNetB7-CS-Xgboost and EfficientNetB7-PSO-

Xgboost is not significant. EfficientNetB7-CS- Xgboost has 

the best values on all four measures, followed by 

EfficientNetB7-PSO-Xgboost, which is 1% higher than 

EfficientNetB7-PSO-Xgboost and 2% higher than 

EfficientNetB7-Xgboost. The results from these two datasets 

show that the novel EfficientNetB7-CS-Xgboost approach 

offers improved prediction performance over the remaining 

two approaches. This is due to the fact that the CS method 

discovers the global optimal solution for cases where the 

search intervals are large and the step distance is small. The 

control of particle position and velocity in the convergence of 

the PSO algorithm is too dependent on the current optimal 

particle, which leads to an early convergence and to the 

impossibility to find the global optimal solution. Since the CS 

algorithm uses Lévy's flight search mechanism, it can ignore 

the local optimal solutions to get the global solution. 

 

4.5 Limitations 

 

Although the results are encouraging, the proposed model 

still has some limitations that are essential to consider. One of 

the main limitations of this study is that all revolutionary 

algorithms have model-dependent parameters, and the actual 

values/settings of these parameters impact the performance of 

the algorithm. However, the appropriate setting of the 

parameters itself becomes an optimization problem. Second, 

no associated patient history is considered in the proposed 

evaluation model. Third, while the model uses a large number 

of convolutional layers, it needs a high computing power; 

otherwise, it will take a long time in computation. 

 

 

5. CONCLUSION 

 

This research facilitates early diagnosis of mammography 

to prevent negative impact in these remote areas. The 

developing of algorithms in this area can be very helpful in 

achieving better health care services. This paper presents how 

to use a convolutional neural network with classification 

algorithms to achieve better medical image identification 

performance of learning algorithms in the first step, and 

optimize this new model with the metaheuristic algorithm in 

the second step. This study observes the performance of 

different CNN models pre-trained with various classifiers, and 

then, based on the statistical results, selects the EfficientNetB7 

model for the feature extraction step and the Xgboost classifier 

for classification. Indeed, it is demonstrated that the Xgboost 

classifier is more suitable for the CNN architecture with a 

large number of residual layers. The reason is that the Xgboost 

algorithm performs the weak tree better, which increases the 

accuracy for each CNN layer. It is more appropriate to 

combine the CNN architecture that has a low number of layers 

like VGG-19 and ResNet-50 with the SVM classifier. 

Nevertheless, it is interesting to achieve the CNN architectures 

that have many layers like EfficientNetB7 with the Xgboost 

classifier. In a second step, the CS method is applied with the 

Xgboost classifier to optimize the hyperparameters. The CS 

algorithm is applied to choose the appropriate Xgboost 

parameters to efficiently prevent the phenomenon of 

"overfitting" or "underfitting" of Xgboost, thus boosting the 

prediction efficiency. Experiments demonstrate that the 

proposed model performs well in both datasets. The results of 

the EfficientNetB7-CS-Xgboost model were compared with 

those of previous studies, and in particular with the 

EfficientNetB7-PSO-Xgboost and CNN-Xgboost models over 

four measures, with the result that the EfficientNetB7-CS-

Xgboost model has better accuracy and higher effect than the 

EfficientNetB7-PSO-Xgboost and EfficientNetB7-Xgboost 

models. It can be said that this study has improved the 

efficiency of the model compared to other models (PSO). This 

novel approach can give, in practice, a novel modeling 

approach for mammographic tumor classification processing. 

This model can also be an effective and accurate decision 

support tool for radiologists and physicians. Nevertheless, the 

probability parameter in CS is fixed, which can influence the 

convergence of the algorithm. 

 

 

6. FUTURE WORKS 

 

The future research direction is to enhance the novel 

approach in multiple ways, for example by designing an 

efficient way to improve the performance of the model by 

optimizing the hyperparameters of EfficientNetB7-CS-

Xgboost. Indeed, parameter adjustment is an important area of 

study [36] that merits more attention. Similarly, a trained 

convolutional neural network can be integrated with a 

recurrent neural network (RNN) to improve algorithm 

performance, while reducing training costs. Finally, 

combining the Xgboost algorithm with other CNN 

architectures with a large number of layers can improve 

classification performance. 

 

 

REFERENCES 

 

[1] Khare, V., Kumari, S. (2022). Performance comparison 

of three classifiers for fetal health classification based on 

cardiotocographic data. Acadlore Transactions on AI and 

Machine Learning, 1(1): 52-60. 

https://doi.org/10.56578/ataiml010107 

[2] Raju, M.S.N., Rao, B.S. (2022). Classification of colon 

and lung cancer through analysis of histopathology 

images using deep learning models. Ingénierie des 

Systèmes d'Information, 27(6): 967-971. 

734



 

https://doi.org/10.18280/isi.270613 

[3] Chang, C.C., Lin, C.J. (2011). LIBSVM: A library for 

support vector machines. ACM Transactions on 

Intelligent Systems and Technology (TIST), 2(3): 1-27. 

https://doi.org/10.1145/1961189.1961199 

[4] Cover, T., Hart, P. (1967). Nearest neighbor pattern 

classification. IEEE Transactions on Information Theory, 

13(1): 21-27. https://doi.org/10.1109/TIT.1967.1053964 

[5] Dasarathy, B.V. (2002). Handbook of data mining and 

knowledge discovery. Oxford University Press, Inc., 

New York, NY, USA. Chapter Data Mining Tasks and 

Methods: Classification: Nearest-Neighbor Approaches, 

pp. 288-298. 

[6] Breiman, L. (2001). Random forests. Machine Learning, 

45: 5-32. https://doi.org/10.1023/A:1010933404324 

[7] Hastie, T., Rosset, S., Zhu, J., Zou, H. (2009). Multi-class 

adaboost. Statistics and Its Interface, 2(3): 349-360. 

https://doi.org/10.4310/SII.2009.v2.n3.a8 

[8] Chen, T., Guestrin, C. (2016). Xgboost: A scalable tree 

boosting system. In Proceedings of the 22nd Acm Sigkdd 

International Conference on Knowledge Discovery and 

Data Mining, pp. 785-794. 

https://doi.org/10.1145/2939672.2939785 

[9] Sutskever, K.I.A., Hinton, G.E. (2012). ImageNet 

classification with deep Convolutional Neural Networks. 

International Conference on Neural Information 

Processing Systems Curran Associates Inc., pp. 1097-

1105. 

[10] Daniel, A.K., Ranjan, R. (2022). An optimized model for 

sentiment classification using attention oriented hybrid 

deep learning techniques. International Journal of 

Artificial Intelligence, 20(01).  

[11] Simonyan, K., Zisserman, A. (2014). Very deep 

convolutional networks for large-scale image recognition. 

arXiv Preprint, 1409.1556. 

https://doi.org/10.48550/arXiv.1409.1556 

[12] Tan, M., Le, Q. (2019). Efficientnet: Rethinking model 

scaling for Convolutional Neural Networks. In 

International Conference on Machine Learning. PMLR, 

pp. 6105-6114. 

[13] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, 

Z. (2016). Rethinking the inception architecture for 

computer vision. In Proceedings of the IEEE Conference 

on Computer Vision and Pattern Recognition, pp. 2818-

2826. https://doi.org/10.1109/CVPR.2016.308 

[14] He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual 

learning for image recognition. In Proceedings of the 

IEEE Conference on Computer Vision and Pattern 

Recognition, pp. 770-778. 

[15] Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, 

K.Q. (2017). Densely connected convolutional networks. 

In Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition, pp. 4700-4708. 

https://doi.org/10.1109/CVPR.2017.243 

[16] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, 

L.C. (2018). Mobilenetv2: Inverted residuals and linear 

bottlenecks. In Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition, pp. 4510-

4520. https://doi.org/10.48550/arXiv.1801.04381 

[17] Jiang, H., He, Z., Ye, G., Zhang, H. (2020). Network 

intrusion detection based on PSO-XGBoost model. IEEE 

Access, 8: 58392-58401. 

https://doi.org/10.1109/ACCESS.2020.2982418 

[18] Chen, J., Zhao, F., Sun, Y., Yin, Y. (2020). Improved 

XGBoost model based on genetic algorithm. 

International Journal of Computer Applications in 

Technology, 62(3): 240-245. 

https://doi.org/10.1504/IJCAT.2020.106571 

[19] Wang, H., Yue, W., Wen, S., Xu, X., Haasis, H.D., Su, 

M., Liu, P., Zhang, S., Du, P. (2022). An improved 

bearing fault detection strategy based on artificial bee 

colony algorithm. CAAI Transactions on Intelligence 

Technology, 7(4): 570-581. 

https://doi.org/10.1049/cit2.12105 

[20] Yang, X.S., Deb, S. (2009). Cuckoo search via Lévy 

flights. In 2009 World Congress on Nature & 

Biologically Inspired Computing (NaBIC). IEEE, pp. 

210-214. https://doi.org/10.1109/NABIC.2009.5393690 

[21] Ker, J., Wang, L., Rao, J., Lim, T. (2017). Deep learning 

applications in medical image analysis. IEEE Access, 6: 

9375-9389. 

https://doi.org/10.1109/ACCESS.2017.2788044 

[22] Varshni, D., Thakral, K., Agarwal, L., Nijhawan, R., 

Mittal, A. (2019). Pneumonia detection using CNN based 

feature extraction. In 2019 IEEE International 

Conference on Electrical, Computer and Communication 

Technologies (ICECCT), pp. 1-7. 

https://doi.org/10.1109/ICECCT.2019.8869364 

[23] Dubrovina, A., Kisilev, P., Ginsburg, B., Hashoul, S., 

Kimmel, R. (2018). Computational mammography using 

deep neural networks. Computer Methods in 

Biomechanics and Biomedical Engineering: Imaging & 

Visualization, 6(3): 243-247. 

https://doi.org/10.1080/21681163.2015.1131197 

[24] Arevalo, J., González, F.A., Ramos-Pollán, R., Oliveira, 

J.L., Lopez, M.A.G. (2015). Convolutional Neural 

Networks for mammography mass lesion classification. 

In 2015 37th Annual International Conference of the 

IEEE Engineering in Medicine and Biology Society 

(EMBC), pp. 797-800. 

https://doi.org/10.1109/EMBC.2015.7318482 

[25] Lee, S.J., Chen, T., Yu, L., Lai, C.H. (2018). Image 

classification based on the boost convolutional neural 

network. IEEE Access, 6: 12755-12768. 

https://doi.org/10.1109/ACCESS.2018.2796722 

[26] Zhang, X., Nguyen, H., Bui, X.N., Tran, Q.H., Nguyen, 

D.A., Bui, D.T., Moayedi, H. (2020). Novel soft 

computing model for predicting blast-induced ground 

vibration in open-pit mines based on particle swarm 

optimization and XGBoost. Natural Resources Research, 

29: 711-721. https://doi.org/10.1007/s11053-019-09492-

7 

[27] Jiang, Y., Tong, G., Yin, H., Xiong, N. (2019). A 

pedestrian detection method based on genetic algorithm 

for optimize XGBoost training parameters. IEEE Access, 

7: 118310-118321. 

https://doi.org/10.1109/ACCESS.2019.2936454 

[28] PUB, M.H., Bowyer, K., Kopans, D., Moore, R., 

Kegelmeyer, P. (1996). The digital database for 

screening mammography. In Proceedings of the Third 

International Workshop on Digital Mammography, 

Chicago, IL, USA, pp. 9-12. 

[29] Sawyer Lee, R., Gimenez, F., Hoogi, A., Rubin, D. 

(2016). Curated breast imaging subset of DDSM. The 

Cancer Imaging Archive. 

[30] Suckling, J., Parker, J., Dance, D., Astley, S., Hutt, I., 

(2015). Mammographic image analysis society (MIAS) 

database v1. 21. 

735



 

[31] Swathi, K., Kodukula, S. (2022). XGBoost classifier 

with hyperband optimization for cancer prediction based 

on geneselection by using machine learning techniques. 

Revue d'Intelligence Artificielle, 36(5): 665. 
https://doi.org/10.18280/ria.360502 

[32] Eiben, A.E., Smit, S.K. (2011). Parameter tuning for 

configuring and analyzing evolutionary algorithms. 

Swarm and Evolutionary Computation, 1(1): 19-31. 

https://doi.org/10.1016/j.swevo.2011.02.001 

[33] Long, W., Liang, X., Huang, Y., Chen, Y. (2014). An 

effective hybrid cuckoo search algorithm for constrained 

global optimization. Neural Computing and Applications, 

25: 911-926. https://doi.org/10.1007/s00521-014-1577-1 

[34] Yang, X.S., Deb, S. (2013). Multiobjective cuckoo 

search for design optimization. Computers & Operations 

Research, 40(6): 1616-1624. 

https://doi.org/10.1016/j.cor.2011.09.026 

[35] Challa, R., Rao, K.S. (2021). Hybrid approach for 

detection of objects from images using fisher vector and 

PSO based CNN. Ingénierie des Systèmes d'Information, 

26(5). https://doi.org/10.18280/isi.260508 

[36] Ren, X., Guo, H., Li, S., Wang, S., Li, J. (2017). A novel 

image classification method with CNN-XGBoost model. 

In Digital Forensics and Watermarking: 16th 

International Workshop, IWDW 2017, Magdeburg, 

Germany, August 23-25, 2017, Springer International 

Publishing. Proceedings, 16: 378-390. 

https://doi.org/10.1007/978-3-319-64185-0_28  

736




