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The surge in data volume necessitates the integration of Resource Description Framework 

(RDF) data within corporate environments. While Extract, Transform, Load (ETL) 

processes exhibit proficiency with conventional data sources, their scalability diminishes 

when applied to large and highly varied data sources, inclusive of RDF data. The latter 

constitutes a wealth of knowledge that, when harnessed via data warehouse technology, can 

augment corporate value in a fiercely competitive milieu. The advent of platforms like 

polystore offers opportunities for advanced hardware deployment. ETL processes 

necessitate two crucial phases: Partitioning and data allocation. Concurrently, the scientific 

community is spurred to innovate ETL processes that support real-time analytics. This study 

proposes a novel architecture for ETL processes, named Open-Scala-ETL (Os-ETL). 

Equipped with a method for deploying a data warehouse based on a polystore, Os-ETL 

enables real-time analysis. The primary objective of the Os-ETL solution is to resolve the 

complexities in deploying a graph structure data warehouse on a polystore—a process that 

involves partitioning and data allocation. Os-ETL is a distributed solution that supports both 

batch and streaming processing using the Spark framework. Scala scripts are executed 

within this framework to partition RDF graphs and distribute the resultant fragments across 

various sites. The implementation of Os-ETL is based on Apache Spark, with ETL 

deployment on a Spark SQL polystore. This solution empowers companies with data 

warehouse technology to improve performance, scalability, and latency between a data 

warehouse and its data sources. The approach has been assessed and validated using large-

scale, heterogeneous data, encompassing the LUBM benchmark, CSV files, an Oracle 

database, and a Neo4j graph database. The results corroborate its superior performance in 

terms of scalability and optimization. 
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1. INTRODUCTION

Nowadays, organizations are increasingly generating large 

amounts of data in a wide variety of high-speed formats 

(Figure 1). We are in the age of Big Data [1]. Researchers 

define Big Data by the following four Vs.: Volume, Variety, 

Velocity and Veracity. These four dimensions characterize 

and distinguish big data from ordinary data. Also, the rapid 

growth of a graph database (RDF data) is an excellent 

opportunity to enrich traditional data warehouses with a new 

V dimension of big data: Value. Thus, allow companies to 

exploit these rich data to enhance their added value in a highly 

competitive world. A few studies have mostly focused on the 

integration of RDF data into a data warehouse and on the ETL 

deployment process based on a polystore system. The first 

work that used a real polystore, but with relational data, was 

proposed by Meehan et al. [2]. Du et al. [3] proved that a 

dynamic workload approach is necessary for data placement 

in a polystore system in order to support ingestion of low-

latency data. 

Berkani et al. [4], chose to deploy the data warehouse in 

vertical representation with Oracle DBMS which, offers a 

storage model to represent instances and graphs, using Oracle 

RDF Semantic Graph. They planned a simulation to deploy a 

data warehouse on a polystore. 

Figure 1. Explosion of data 
(Source: statista.com) 

Some works achieve the right degree of parallelism of ETL 

processes, by providing the Map and Reduce functions, known 

Ingénierie des Systèmes d’Information 
Vol. 28, No. 3, June, 2023, pp. 557-565 

Journal homepage: http://iieta.org/journals/isi 

557

https://orcid.org/0000-0001-7613-8880
https://orcid.org/0000-0001-6704-5754
https://orcid.org/0000-0003-1558-7273
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.280303&domain=pdf


 

as a MapReduce framework (i.e., partition settings, number of 

nodes) [5]. However, the later has some limitations (Figure 2). 

Indeed, it only accepts one input data stream at a time in a 

key/value format, also it doesn’t support a real-time processing. 

In addition, the developer has to write custom code for the Map 

and Reduce functions, which is difficult to maintain and 

reprocess. 

Furthermore, companies nowadays need to make real-time 

decisions based on large amounts of data, given from graph 

structured data sources. Thus, we argue that for modern data 

warehouse (Big Data warehouse) applications, in which 

latency and scalability are of great importance, the ETL 

process should be optimized using new technologies such as 

Spark framework. We claim that this requires a new 

architecture including a Spark module for building new data 

warehouse applications. Also, the goal of this study is to 

resolve the challenging process of deploying a graph structure 

data warehouse on a polystore, which involves two phases: 

data allocation and partitioning. 

Thus, in this paper, we propose a new solution to solve the 

problem of deploying a graph structure data warehouse on a 

polystore, which is a difficult task, with two phases namely the 

partitioning and the allocation of the data. The proposed 

architecture for ETL named Open-Scala-ETL, which consists 

of three components: (i) a collector of data updates (CDC 

technique); (ii) a Spark ETL engine with two modules for 

fragmentation and assignment; and (iii) a deployment 

polystore. Further, to overcome limitations of MapReduce 

framework, we use the in-memory parallel computing (Spark 

framework), which uses a Direct Acyclic Graph (DAG) model, 

for computing components multiple times and supports in-

memory data sharing between multiple tasks. Also, the use of 

new parallelization technologies is the key for achieving better 

scalability and ETL performance. 

The main motivation of the proposed architecture for ETL 

processes is the need of improving the efficiency and 

performance of these processes which deal with heterogeneous 

and voluminous data compared to other existing ETL based 

optimization techniques. Longo et al. [6] present a novel 

approach based on stream control in ETL. Masouleh et al. [7] 

introduce a control-flow-based approach to ETL process 

modeling, and use the combination of parallelization and 

shared cache memory to optimize the ETL performance of the 

data warehouse. 

Thus, the given solution involves various data sources 

(relational, graph and CSV, etc.) and takes advantage of the 

computing power and distributed storage, offered by the Spark 

framework to optimize ETL processes. Both academics and 

industry have adopted Apache Spark as a fast and scalable 

framework [8]. Our new framework allows the development 

of multidimensional data warehouses capable of managing 

large masses of data. We provide deployment on polystore. 

Therefore, our approach takes advantage of different storage 

systems (polystore) to increase the execution performance of 

the analysis algorithms. 

The paper is organized as follows. After this introduction; 

section 2 presents the related works which summarize the main 

existing studies underlining ETL processes. Section 3 details 

the proposed framework. Section 4 introduces the background 

knowledge of the proposed system and presents a case study. 

Section 5 presents the experimental results. Finally, section 6 

concludes the paper. 

 

 
 

Figure 2. The MapReduce vs. Spark paradigm [9] 

 

 

2. RELATED WORK 

 

This section describes the state of the art of the main works 

of the ETL process dealing with the real-time, the deployment 

of data warehouse on polystore as well as the problem of 

variety in the context of integrating of Big Data Belayadi et al. 

[10], Alsanad et al. [11], Chen et al. [12]. Vassiliadis and 

Simitsis [13] present a study related to research and industry 

for real-time ETL. Thus, an EAI (Enterprise Application 

Integration) solution has been created, with a micro-batch ETL 

which provides a rapid transformation. However, this 

approach presents the challenge of consistency, which 

indicates the time interval between the data sources and the 

target data warehouse before answering queries. A semi-

streaming join algorithm (SSJA) has been proposed [14]. The 

(SSJA) algorithm supports highspeed streams with disk and 
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memory access management. Muddasir and Raghuveer [15], 

discuss the three available techniques to achieve realtime ETL, 

including metadata management, change data capture (CDC) 

and distributed processing of Big Data. Meehanet al. [2], 

propose a novel generic streaming ETL architecture for new 

real-time data warehouse applications. The architecture 

contains four components: a data collector; the streaming ETL 

engine; the OLAP (online analytical processing) backend; and 

a data Migrator. But the proposed approach is not 

benchmarked against the state of the art to assess its 

performance against other ETLs. Biswas and Mondal [16], 

plane a cloud-based ETL solution with a new Spark-based 

ETL framework. The proposed framework manages the real-

time data flow on the cloud platform. Berkani et al. [17], 

dynamically combine the ETL process and the selection of 

materialized views, within the framework of a near real-time 

data warehouse design. They consider semantic data sources, 

with particular emphasis on the ETL and physical design 

phases. Boury-Brisset [18], propose the design and 

implementation of a framework based on scalable multi-

intelligence data integration services to facilitate the 

integration of heterogeneous unstructured and structured data. 

Pareek et al. [19] presented a new distributed architecture of 

ETL Striim developed to collect datasets from different 

sources. The ETL engine runs on a scalable and fault-tolerant 

cluster of compute nodes. It extracts real-time data from 

sources, transforms it and produces result events that are 

loaded/broadcasted into targets. The authors demonstrate the 

efficiency of Striim’s ETL engine against a popular KSQL 

open-source streaming ETL engine built on top of Apache 

Kafka. Bansal [20], propose a semantic ETL framework which 

uses semantic technologies in order to integrate heterogeneous 

data. It provides a foundation for integrating and 

understanding knowledge from multiple sources. 

Other works based on the real-time ETL, consider the 

optimal structures related to the traditional data warehouse. Ali 

and Wrembel [21], present a study of existing works on real-

time ETL based optimization of ETL processes within the 

framework of traditional data warehouses. Besides, a 

theoretical framework for ETL optimization has been 

introduced. To improve the efficiency of ETL processes, 

Thomsen and Pedersen [22] have created ETL processes using 

Python code. Developers can treat data efficiently by using 

built-in features and using data access for fact and dimension 

tables. The proposed solution does not provide any cost model 

to estimate a performance benefit. Liu and Iftikhar [23], 

proposed an optimization framework for minimizing the time 

and resources required for ETL data flows. The partitioning 

and parallelization of ETL processes have been employed. 

Thus, the ETL process is partitioned into linear sub-processes, 

and then data parallelization is applied to each of the sub-

processes. Finally, all processes are multithreaded. The 

framework is implemented in the open source ETL tool, 

Talend Open Studio for data integration. The large amount of 

data makes ETL extremely expensive. Liu et al. [24], 

presented a framework named ETLMR, which employed 

MapReduce to achieve scalability which easily creates 

dimensional ETL processes based on MapReduce to load data 

into the data warehouse. The user of ETLMR framework can 

implement parallel ETL programs with a few lines of code 

declaring target tables and transformation functions. 

In the context of change data capture (CDC), research work 

based on the log-based method is introduced [25]. A trigger-

based approach to capture changed data from different data 

sources is mentioned by Valêncio [26]. One of the most 

efficient ways to extract data from a database with minimal 

overhead is to use, Change Data Capture (CDC) [13].  

A growing need for Big Data analytics requires new 

architectures to store data, such as a data lake or a polystore 

[21]. A polystore named Bigdawg has been presented by 

Duggan et al. [27]. While, Gurajada [28], divided the RDF 

graph into multiple fragments and distribute each to a different 

site in a distributed system. Also, Huang et al. [29], planed a 

graph partitioning approach on a distributed framework, where 

the triples are distributed across different machines using the 

graph partitioner [30]. Al-Ghezi and Wiese [31], considered 

the adaptation of a partitioning and replication layer with both 

the workload and the availability of storage space in a 

distributed RDF triple store. Without prior assumption on the 

query workload, the proposed system starts by performing a 

static partitioning of the graphs using METIS [30]. 

Finally, most of the aforementioned works deal only with 

traditional types of sources with the deployment of the data 

warehouse on a relational system. Furthermore, no work 

attempts to propose a central and uniform model to cover a 

wide variety of sources and complicated semantics in order to 

provide a framework for the optimization and scalability of 

ETL processes. In this work, we address this problem by 

proposing a pivot model that allows for the alignment of all 

types of sources in a common RDF model. Moreover, the 

proposed solution allows supporting a data warehouse, 

deployed on a polystore with easy scaling provided by the use 

of the Spark framework. 

3. THE PROPOSED ARCHITECTURE

Figure 3 illustrates the architecture of the proposed 

approach named Open Scala ETL process (Os-ETL). It 

consists of six steps: (i) extract and transfer stream data; (ii) 

alignment of all data sources to the RDF data model; (iii) 

partitioning of data sources (iv) transform RDF data sources 

into GraphX; (v) the appropriate transformations; and (vi) 

allocation and distribution of the obtained RDF fragments on 

the Spark SQL polystore. These steps are described in details 

as follows: 

Step 1: extract and transfer stream data, which consist an 

update from the data sources to the Hadoop Distributed File 

System (HDFS), using the change data capture technique that 

identifies changes to data sources via triggers implemented in 

each source participating in the ETL. 

Step2: alignment of all data sources to the RDF data model. 

This step involves a manual process for analyzing the datasets. 

We create a pivot model to reduce the number of mappings for 

the different formats of the data sources involved in the ETL. 

Step 3: the partitioning of data sources, in this case the 

adapted algorithms named path partitioning (Figure 4) 

introduced by Wu et al. [32], has been employed. In our data 

warehouse scenario, setting up a polystore entails solving 

graph data partitioning and allocation issues.  

Step 4: transform RDF data sources into GraphX [33]. 

GraphX is the Spark API for graphs and graph-parallel 

computing.  

Step 5: perform the appropriate transformations using Scala 

scripts. In this step the traditional ETL operators and ETL 

operators for managing graph representations have been used. 

Step 6: allocation and distribution of the obtained RDF 

fragments on the Spark SQL polystore. In our solution for 

integrating different types of data, we use the solution of 
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several DBMS together. 

 

 
 

Figure 3. General architecture of the Os-ETL 

 

 
 

Figure 4. Path partitioning 

 

The planed Os-ETL system involving heterogeneous data 

sources to ensure scalability and reduce latency between a data 

warehouse and its sources. In addition, for step (ii) alignment 

of all data sources to the RDF data model needs to modify the 

pivot model [34], in order to unify all data model formalisms. 

In this case, the alignment to the RDF data model has been 

employed. Thus, the problem of integrating heterogeneous 

data with heterogeneous data models in data warehouse 

applications is solved. The Os-ETL solution is implemented in 

Scala scripts, based on the Spark execution model shown in 

Figure 5. 

 

 
 

Figure 5. Spark execution model  
Note: (https://spark.apache.org/docs/latest/cluster-overview.html) 

 

The proposed algorithm Os-ETL 

 

In the proposed architecture, we consider the schema of the 

data warehouse as predefined; followed by the data sources 

which are annotated in the tool protégé [35] according to the 

needs expressed in the application. 

Also in Step 1, the Last updated timestamp (variable used 

by the technique change data capture (CDC)), which detects 

and collects data changes of interest requires techniques 

known as CDC that continuously monitor operational data 

sources [36]. The output of this step is represented by a delta 

(which represents all changes to be made to the data sources). 

The eighty (18) generics conceptual ETL operators [37, 38], 

have been used. Algorithm 1 describes the steps of the 

proposed Os-ETL system. 

 
Input: Relational database, CSV files, Flat files, Graph 

databases (NT files or OWL files): all of the data source 

models are aligned to RDF data model, the schema of the 

data warehouse (DW) and the eighty (18) conceptual ETL 

operators.  

Output: Big Data Darehouse deployed over Spark SQL 

polystore. 

Begin 

1. - Create the control module CDC control module 

2. - if DW = empty then 

   Repeat for each RDF data source 

   Load changes into Temp 

   Filler source by last updated timestamp 

   Result (delta) to ETL engine (create and load a 

view) 

end if 

3. - Built the fragmentation by using Algorithm:P.P 

(Graph RDF, NBpartitions) 

begin 

Load the N-Triple dataset and apply the path 

partition algorithm 

Specifies end-to-end paths 

Generate path groups for each starting vertex 

Merges a vertex based on the number of paths 

through that vertex 

 end;  

4. - Make the appropriate transformations 

5. - ETL Process and Deployment 

End. 
 

 

 

4. CASE STUDY  
 

This section describes the tools and software used in this 

work as well as a case study is considered to illustrate the 

underlying principles of the proposed Os-ETL. 

 

4.1 The ETL Spark engine 

 

Originally Spark was developed in 2009 on UC Berkeley 

AMPLab. It became open source in 2010. Spark is a cluster 

computing platform designed to be fast and general purpose. 

It is highly accessible, offering simple APIs in Python, Java, 

R, Scala and SQL, and rich built-in libraries. It also supports 

advanced tools, such as Spark Streaming, MLlib for machine 

learning, GraphX for processing graphs, and Spark SQL for 

processing SQL and structured data. Spark extends the 

MapReduce model to support more types of computations, 

including interactive queries and streaming processing. One of 

the main features offered by Spark for speed is the ability to 

perform in-memory calculations [39].  

The most components used in Spark are: 

 

4.1.1 Resilient distributed datasets  

A resilient distributed dataset (RDD), is the basic 

abstraction in Spark, is a read-only collection of objects 

partitioned across a number of machines that may be recreated 

in the event that a partition is lost. An RDD can be explicitly 

cached in memory between machines and used repeatedly in 

parallel tasks into MapReduce [40]. The ETL and RDD 

processes share a lot of correspondence and similarities: The 

activities and record sets that make up an ETL process can be 

seen as nodes in a directed acyclic graph (DAG), with the 

Algorithm 1 Os-ETL  
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input-output links between the nodes serving as the graph's 

edges [41]. In RDD, the created compute set, forms a DAG, it 

does not perform any execution, but it prepares for execution 

at the end. After the extraction, the ETL process performs 

transformations on the data such as (cleaning, filtering, 

converting, merging, aggregating...etc.). Thus, the ETL 

process fits well with Spark's RDD execution model. 
 

4.1.2 DataFrame and DATASET 

DataFrames are collections of structured records that can be 

manipulated using Spark's procedural API. They offer a 

complete set of functions (select columns, filter, join, 

aggregate, etc.) that solve common data analysis problems. A 

distributed collection of data is known as a dataset. A dataset 

is divided into columns called DataFrames, much like the 

tables of a database [40]. 
 

4.1.3 Spark's parallel processing 

At a high level of abstraction, Spark applications run as 

independent processes that reside on clusters and are 

coordinated by SparkContext in the main program. Each Spark 

application consists of a driver program that executes the user's 

main function and initiates several parallel operations on the 

cluster. The main steps for running a spark program are: 

-  The first step in running a Spark program is to submit the 

job using spark-submit.  

-  The spark-submit script is used to launch the program on 

a cluster.  

-  Once the job is submitted, the SparkContext pilot program 

is the entry point to Spark.  

-  SparkContext routes the program to the modules like 

Cluster Master Node and RDDs are also created by these 

SparkContext driver programs.  

-  The program is then transmitted to the Cluster Master 

Node. Each cluster has a master node that does all the 

necessary processing. It then transmits the program to the 

worker nodes. The working node is the problem solver. Master 

nodes contain executors that run with the SparkContext driver. 
 

4.2 ETL Deployment over a polystore 
 

According to Stonebraker and Çetintemel [42], a polystore 

system is a database system having various heterogeneous data 

stores and diverse query interfaces. Due to this heterogeneity 

of the storage systems in the current Big Data ecosystem, 

many dissimilar backends or federated storage engines are 

required [2]. 

Data warehouse storage is impacted by variety, and 

polystore are well suited to achieve excellent data access 

performance [43]. So, we claim that to get the added value 

from business, we have to deal with variety. In our approach, 

we employ the Spark SQL hybrid polystore for deploying the 

target data warehouse, whose architecture is depicted in Figure 

6. 
 

 
 

Figure 6. The Spark SQL polystore architecture [44] 

4.3 Data-Sets 

 

In order to validate the effectiveness and efficiency of the 

proposed system, we illustrate a case study inspired from a 

project of the training department of the Ministry of Higher 

Education and Research which wants to build a data 

warehouse which consists of collecting actionable information 

on university students, namely their performance in 

publications.  

The LUBM (http://swat.cse.lehigh.edu/projects/lubm/.) 

benchmark (related to the academic field is used to generate 

the data source schemas. It generates data from different 

universities, such as each university has number of 

departments, professors, students and courses. We conducted 

a series of experiments using a data warehouse schema, which 

is presented in Figure 7, taken from the LUBM benchmark 

related to the academic domain. 

A tool named UBA is provided by LUBM to generate data 

on the Univ-Bench ontology. These datasets were used to 

create simulated graphs based on outside data sources. As 

internal sources, we also took into account CSV data sources 

and a relational database. These sources are as follows: 

- Source 1 is a Neo4j Graph Database with nodes, edges: 

Person, Student(name), Publication, Publication Author, 

University. 

- Source 2 is a CSV file composed of attributes: 

Student(name), Publication, University. 

- Source 3 is an Oracle database composed of tables and 

attributes: Student(name), Course(title), University. 

We applied the Os-ETL algorithm and the Scala scripts to 

populate the target data warehouse schema deployed on the 

Spark SQL polystore. 

 

 
 

Figure 7. The data warehouse example 

 

Example of running the Os-ETL Algorithm on CSV file: 

Spark ETL scripts import CSV data to several nodes. Spark 

begins execution after switching the transforms from RDD to 

DAG. A logical execution plan is transformed into a physical 

execution plan using a DAG. The DAG is sent to the DAG 

scheduler when an activity is invoked. It divided on sub-

processes, which consist of a single task. The program can 

then be deployed on many machines through the transmission 

of these jobs to the task manager via a cluster manager. The 

Spark framework handles processing from a distribution 

standpoint. Each DataFrame, whether persistent or not, is a 

partitioned collection. 

 

4.4 Metrics 

 

To evaluate any ETL system efficiency, the response time 

is one of the important metrics. The response time after 

execution of the Os-ETL on the whole data involved in the 
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integration. Another metric is the performance time of the ETL 

system, where the performance is measured in term of 

scalability. The size of fact data is scaled and the execution 

time taken for each size of data is collected and plotted [45]. 

 

 

5. EXPERIMENT AND RESULTS 

 

In this section, we present the evaluation of the proposed 

system based on the above case study. Thus, three different 

experiences were conducted. The first experiment is a 

comparison of the proposed Os-ETL with an existing approach 

that does not use a partitioning technique. The second 

experiment is also a comparison with an existing approach that 

uses partitioning technique. The third experiment considers 

the scalability of our solution. 

The Hardware used to run the tests was PC having Intel(R) 

Core (TM) i5-8350U (1.7 GHz) processor, 8 GB main memory 

on a 500 GB SSD hard disc. The software used: Microsoft 

Windows 10x64 Professional, Software specifications: Oracle 

12c, Apache Spark 2.4.4, Scala 4.7, Neo4j graph database 

management system, and Eclipse IDE. All of the software 

tools were installed on the local machine for evaluation 

purposes. 

The data source schemas are from the LUBM benchmark. 

We use real world datasets: CSV file, Oracle database and 

Neo4j database. From this set we generated five RDF datasets 

in N-Triple format as shown in Table 1. The obtained data 

warehouse has two stores. For its deployment, we used Oracle 

Database 12c as the database backend for store 1 and Neo4j 

Graph Database for store 2. 

 

Table 1. Datasets 

 
Concepts (University) RDF (N-Triples) 

3 21 057 

6 42 115 

9 63 173 

12 84 231 

15 105 289 

 

Experiment 1. We run the Os-ETL algorithm to populate 

the target data warehouse schema, and we compare the 

response time of our method with previous study [46] (no 

partitioning strategy). Figure 8 illustrates the reached results, 

where the number of instances is shown in thousands and the 

time performance in milliseconds. According to the results 

obtained, it appears that the Os-ETL was the most profitable 

because the response time of the ETL was divided by 4 (for 

example for 35000 instances the response time was 4000 ms) 

compared to the approach [46]. The results, clearly show that 

the partitioning strategy significantly improves the response 

time of the ETL processes.  

Experiment 2. We run the Os-ETL algorithm to populate 

the target data warehouse schema deployed on the Spark SQL 

polystore over two stores (Neo4j Graph Database and Oracle 

Database). We measure the time spent in integrating the 

instances in each multidimensional concept. Figure 9 presents 

the obtained results, where the number of instances is shown 

in thousands and the time performance in milliseconds. We 

compare the performance of building the target data 

warehouse of the Os-ETL with another previous study [45] 

(with partitioning strategy). The results demonstrated that the 

proposed system is much more efficient.  

 

 
 

Figure 8. Os-ETL performance vs. [46] ETL 

 

 
 

Figure 9. Os-ETL performance vs. [45] ETL 

 

 
 

Figure 10. Os-ETL performance 

 

Experiment 3. We considered the scalability of the Os-ETL 

system by varying the size of the data sources and therefore 

the number of tasks that run in parallel on the Spark cluster to 

process the data. We measure the performance of the proposed 

system in terms of scalability.  

The size of fact data is scaled from 20 to 120 GB. Figure 10 

shows the results. The combined use of CDC, partitioning and 

polystore techniques show that the results illustrated in Figure 

10 show that the temporal performance of our system is very 

good compared to the size of the data set which increases. The 

results confirm that this is a good choice for the partitioning 

strategy and therefore the present study confirm the results 

regarding scalability. 
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6. CONCLUSIONS 

 

In this paper, we have proposed a new solution called Os-

ETL which consist of six steps: (i) extracting and transferring 

stream data; (ii) aligning all data sources to the RDF data 

model; (iii) partitioning data sources (iv) transforming RDF 

data into GraphX data; (v) appropriate transformations on 

GraphX data; and (vi) allocation and distribution of the 

obtained RDF fragments on the Spark SQL polystore. First, 

we have described the components used by Os-ETL which 

extracts heterogeneous data sources involving web-data as 

external data. Two techniques, the CDC method and the 

partitioning strategy were used and analyzed that have greatly 

improved the response time of ETL. Also, we proposed the 

usage of polystore systems as a hardware solution for 

deploying the target data warehouse and ETL processes. Os-

ETL system significantly improves ETL processes and allows 

developers to focus on business logic, rather than worrying 

about the complex process of extracting-transforming-loading 

data in a highly varied environment. The most important 

results are related to the performance time of the ETL 

processes compared to the previous work, thanks to the 

partitioning, in-memory and pipeline strategies. The obtained 

results confirm the better performance of the Os-ETL system 

in terms of scalability and optimization. As future work, the 

proposed system can be extended in several directions. The 

system can be designed to support other types of 

heterogeneous data sources such as Linked Open Data (LOD). 

The system can be tested with several benchmarks such as 

TPC-DI. 
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