
Os-ETL: A High-Efficiency, Open-Scala Solution for Integrating Heterogeneous Data in

Large-Scale Data Warehousing

El Yazid Gueddoudj1,2* , Azeddine Chikh1,2 , Abdelouahab Attia3,4

1 Computer Science Department, Faculty of Science, University of Tlemcen, Tlemcen 13000, Algeria
2 LRIT Laboratory, University of Tlemcen, Tlemcen 13000, Algeria
3 Computer Science Department, University Mohamed El Bachir El Ibrahimi of Bordj BouArreridj, Bordj Bou Arreridj 34000,

Algeria
4 LMSE Laboratory, University Mohamed El Bachir El Ibrahimi of Bordj BouArreridj, Bordj Bou Arreridj, Algeria

Corresponding Author Email: yazid.gueddoudj@univ-tlemcen.dz

https://doi.org/10.18280/isi.280303 ABSTRACT

Received: 15 February 2023

Accepted: 21 May 2023

The surge in data volume necessitates the integration of Resource Description Framework

(RDF) data within corporate environments. While Extract, Transform, Load (ETL)

processes exhibit proficiency with conventional data sources, their scalability diminishes

when applied to large and highly varied data sources, inclusive of RDF data. The latter

constitutes a wealth of knowledge that, when harnessed via data warehouse technology, can

augment corporate value in a fiercely competitive milieu. The advent of platforms like

polystore offers opportunities for advanced hardware deployment. ETL processes

necessitate two crucial phases: Partitioning and data allocation. Concurrently, the scientific

community is spurred to innovate ETL processes that support real-time analytics. This study

proposes a novel architecture for ETL processes, named Open-Scala-ETL (Os-ETL).

Equipped with a method for deploying a data warehouse based on a polystore, Os-ETL

enables real-time analysis. The primary objective of the Os-ETL solution is to resolve the

complexities in deploying a graph structure data warehouse on a polystore—a process that

involves partitioning and data allocation. Os-ETL is a distributed solution that supports both

batch and streaming processing using the Spark framework. Scala scripts are executed

within this framework to partition RDF graphs and distribute the resultant fragments across

various sites. The implementation of Os-ETL is based on Apache Spark, with ETL

deployment on a Spark SQL polystore. This solution empowers companies with data

warehouse technology to improve performance, scalability, and latency between a data

warehouse and its data sources. The approach has been assessed and validated using large-

scale, heterogeneous data, encompassing the LUBM benchmark, CSV files, an Oracle

database, and a Neo4j graph database. The results corroborate its superior performance in

terms of scalability and optimization.

Keywords:

ETL, spark, big data, RDF, partitioning,

data warehouse, polystore, scalability

1. INTRODUCTION

Nowadays, organizations are increasingly generating large

amounts of data in a wide variety of high-speed formats

(Figure 1). We are in the age of Big Data [1]. Researchers

define Big Data by the following four Vs.: Volume, Variety,

Velocity and Veracity. These four dimensions characterize

and distinguish big data from ordinary data. Also, the rapid

growth of a graph database (RDF data) is an excellent

opportunity to enrich traditional data warehouses with a new

V dimension of big data: Value. Thus, allow companies to

exploit these rich data to enhance their added value in a highly

competitive world. A few studies have mostly focused on the

integration of RDF data into a data warehouse and on the ETL

deployment process based on a polystore system. The first

work that used a real polystore, but with relational data, was

proposed by Meehan et al. [2]. Du et al. [3] proved that a

dynamic workload approach is necessary for data placement

in a polystore system in order to support ingestion of low-

latency data.

Berkani et al. [4], chose to deploy the data warehouse in

vertical representation with Oracle DBMS which, offers a

storage model to represent instances and graphs, using Oracle

RDF Semantic Graph. They planned a simulation to deploy a

data warehouse on a polystore.

Figure 1. Explosion of data
(Source: statista.com)

Some works achieve the right degree of parallelism of ETL

processes, by providing the Map and Reduce functions, known

Ingénierie des Systèmes d’Information
Vol. 28, No. 3, June, 2023, pp. 557-565

Journal homepage: http://iieta.org/journals/isi

557

https://orcid.org/0000-0001-7613-8880
https://orcid.org/0000-0001-6704-5754
https://orcid.org/0000-0003-1558-7273
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.280303&domain=pdf

as a MapReduce framework (i.e., partition settings, number of

nodes) [5]. However, the later has some limitations (Figure 2).

Indeed, it only accepts one input data stream at a time in a

key/value format, also it doesn’t support a real-time processing.

In addition, the developer has to write custom code for the Map

and Reduce functions, which is difficult to maintain and

reprocess.

Furthermore, companies nowadays need to make real-time

decisions based on large amounts of data, given from graph

structured data sources. Thus, we argue that for modern data

warehouse (Big Data warehouse) applications, in which

latency and scalability are of great importance, the ETL

process should be optimized using new technologies such as

Spark framework. We claim that this requires a new

architecture including a Spark module for building new data

warehouse applications. Also, the goal of this study is to

resolve the challenging process of deploying a graph structure

data warehouse on a polystore, which involves two phases:

data allocation and partitioning.

Thus, in this paper, we propose a new solution to solve the

problem of deploying a graph structure data warehouse on a

polystore, which is a difficult task, with two phases namely the

partitioning and the allocation of the data. The proposed

architecture for ETL named Open-Scala-ETL, which consists

of three components: (i) a collector of data updates (CDC

technique); (ii) a Spark ETL engine with two modules for

fragmentation and assignment; and (iii) a deployment

polystore. Further, to overcome limitations of MapReduce

framework, we use the in-memory parallel computing (Spark

framework), which uses a Direct Acyclic Graph (DAG) model,

for computing components multiple times and supports in-

memory data sharing between multiple tasks. Also, the use of

new parallelization technologies is the key for achieving better

scalability and ETL performance.

The main motivation of the proposed architecture for ETL

processes is the need of improving the efficiency and

performance of these processes which deal with heterogeneous

and voluminous data compared to other existing ETL based

optimization techniques. Longo et al. [6] present a novel

approach based on stream control in ETL. Masouleh et al. [7]

introduce a control-flow-based approach to ETL process

modeling, and use the combination of parallelization and

shared cache memory to optimize the ETL performance of the

data warehouse.

Thus, the given solution involves various data sources

(relational, graph and CSV, etc.) and takes advantage of the

computing power and distributed storage, offered by the Spark

framework to optimize ETL processes. Both academics and

industry have adopted Apache Spark as a fast and scalable

framework [8]. Our new framework allows the development

of multidimensional data warehouses capable of managing

large masses of data. We provide deployment on polystore.

Therefore, our approach takes advantage of different storage

systems (polystore) to increase the execution performance of

the analysis algorithms.

The paper is organized as follows. After this introduction;

section 2 presents the related works which summarize the main

existing studies underlining ETL processes. Section 3 details

the proposed framework. Section 4 introduces the background

knowledge of the proposed system and presents a case study.

Section 5 presents the experimental results. Finally, section 6

concludes the paper.

Figure 2. The MapReduce vs. Spark paradigm [9]

2. RELATED WORK

This section describes the state of the art of the main works

of the ETL process dealing with the real-time, the deployment

of data warehouse on polystore as well as the problem of

variety in the context of integrating of Big Data Belayadi et al.

[10], Alsanad et al. [11], Chen et al. [12]. Vassiliadis and

Simitsis [13] present a study related to research and industry

for real-time ETL. Thus, an EAI (Enterprise Application

Integration) solution has been created, with a micro-batch ETL

which provides a rapid transformation. However, this

approach presents the challenge of consistency, which

indicates the time interval between the data sources and the

target data warehouse before answering queries. A semi-

streaming join algorithm (SSJA) has been proposed [14]. The

(SSJA) algorithm supports highspeed streams with disk and

558

memory access management. Muddasir and Raghuveer [15],

discuss the three available techniques to achieve realtime ETL,

including metadata management, change data capture (CDC)

and distributed processing of Big Data. Meehanet al. [2],

propose a novel generic streaming ETL architecture for new

real-time data warehouse applications. The architecture

contains four components: a data collector; the streaming ETL

engine; the OLAP (online analytical processing) backend; and

a data Migrator. But the proposed approach is not

benchmarked against the state of the art to assess its

performance against other ETLs. Biswas and Mondal [16],

plane a cloud-based ETL solution with a new Spark-based

ETL framework. The proposed framework manages the real-

time data flow on the cloud platform. Berkani et al. [17],

dynamically combine the ETL process and the selection of

materialized views, within the framework of a near real-time

data warehouse design. They consider semantic data sources,

with particular emphasis on the ETL and physical design

phases. Boury-Brisset [18], propose the design and

implementation of a framework based on scalable multi-

intelligence data integration services to facilitate the

integration of heterogeneous unstructured and structured data.

Pareek et al. [19] presented a new distributed architecture of

ETL Striim developed to collect datasets from different

sources. The ETL engine runs on a scalable and fault-tolerant

cluster of compute nodes. It extracts real-time data from

sources, transforms it and produces result events that are

loaded/broadcasted into targets. The authors demonstrate the

efficiency of Striim’s ETL engine against a popular KSQL

open-source streaming ETL engine built on top of Apache

Kafka. Bansal [20], propose a semantic ETL framework which

uses semantic technologies in order to integrate heterogeneous

data. It provides a foundation for integrating and

understanding knowledge from multiple sources.

Other works based on the real-time ETL, consider the

optimal structures related to the traditional data warehouse. Ali

and Wrembel [21], present a study of existing works on real-

time ETL based optimization of ETL processes within the

framework of traditional data warehouses. Besides, a

theoretical framework for ETL optimization has been

introduced. To improve the efficiency of ETL processes,

Thomsen and Pedersen [22] have created ETL processes using

Python code. Developers can treat data efficiently by using

built-in features and using data access for fact and dimension

tables. The proposed solution does not provide any cost model

to estimate a performance benefit. Liu and Iftikhar [23],

proposed an optimization framework for minimizing the time

and resources required for ETL data flows. The partitioning

and parallelization of ETL processes have been employed.

Thus, the ETL process is partitioned into linear sub-processes,

and then data parallelization is applied to each of the sub-

processes. Finally, all processes are multithreaded. The

framework is implemented in the open source ETL tool,

Talend Open Studio for data integration. The large amount of

data makes ETL extremely expensive. Liu et al. [24],

presented a framework named ETLMR, which employed

MapReduce to achieve scalability which easily creates

dimensional ETL processes based on MapReduce to load data

into the data warehouse. The user of ETLMR framework can

implement parallel ETL programs with a few lines of code

declaring target tables and transformation functions.

In the context of change data capture (CDC), research work

based on the log-based method is introduced [25]. A trigger-

based approach to capture changed data from different data

sources is mentioned by Valêncio [26]. One of the most

efficient ways to extract data from a database with minimal

overhead is to use, Change Data Capture (CDC) [13].

A growing need for Big Data analytics requires new

architectures to store data, such as a data lake or a polystore

[21]. A polystore named Bigdawg has been presented by

Duggan et al. [27]. While, Gurajada [28], divided the RDF

graph into multiple fragments and distribute each to a different

site in a distributed system. Also, Huang et al. [29], planed a

graph partitioning approach on a distributed framework, where

the triples are distributed across different machines using the

graph partitioner [30]. Al-Ghezi and Wiese [31], considered

the adaptation of a partitioning and replication layer with both

the workload and the availability of storage space in a

distributed RDF triple store. Without prior assumption on the

query workload, the proposed system starts by performing a

static partitioning of the graphs using METIS [30].

Finally, most of the aforementioned works deal only with

traditional types of sources with the deployment of the data

warehouse on a relational system. Furthermore, no work

attempts to propose a central and uniform model to cover a

wide variety of sources and complicated semantics in order to

provide a framework for the optimization and scalability of

ETL processes. In this work, we address this problem by

proposing a pivot model that allows for the alignment of all

types of sources in a common RDF model. Moreover, the

proposed solution allows supporting a data warehouse,

deployed on a polystore with easy scaling provided by the use

of the Spark framework.

3. THE PROPOSED ARCHITECTURE

Figure 3 illustrates the architecture of the proposed

approach named Open Scala ETL process (Os-ETL). It

consists of six steps: (i) extract and transfer stream data; (ii)

alignment of all data sources to the RDF data model; (iii)

partitioning of data sources (iv) transform RDF data sources

into GraphX; (v) the appropriate transformations; and (vi)

allocation and distribution of the obtained RDF fragments on

the Spark SQL polystore. These steps are described in details

as follows:

Step 1: extract and transfer stream data, which consist an

update from the data sources to the Hadoop Distributed File

System (HDFS), using the change data capture technique that

identifies changes to data sources via triggers implemented in

each source participating in the ETL.

Step2: alignment of all data sources to the RDF data model.

This step involves a manual process for analyzing the datasets.

We create a pivot model to reduce the number of mappings for

the different formats of the data sources involved in the ETL.

Step 3: the partitioning of data sources, in this case the

adapted algorithms named path partitioning (Figure 4)

introduced by Wu et al. [32], has been employed. In our data

warehouse scenario, setting up a polystore entails solving

graph data partitioning and allocation issues.

Step 4: transform RDF data sources into GraphX [33].

GraphX is the Spark API for graphs and graph-parallel

computing.

Step 5: perform the appropriate transformations using Scala

scripts. In this step the traditional ETL operators and ETL

operators for managing graph representations have been used.

Step 6: allocation and distribution of the obtained RDF

fragments on the Spark SQL polystore. In our solution for

integrating different types of data, we use the solution of

559

several DBMS together.

Figure 3. General architecture of the Os-ETL

Figure 4. Path partitioning

The planed Os-ETL system involving heterogeneous data

sources to ensure scalability and reduce latency between a data

warehouse and its sources. In addition, for step (ii) alignment

of all data sources to the RDF data model needs to modify the

pivot model [34], in order to unify all data model formalisms.

In this case, the alignment to the RDF data model has been

employed. Thus, the problem of integrating heterogeneous

data with heterogeneous data models in data warehouse

applications is solved. The Os-ETL solution is implemented in

Scala scripts, based on the Spark execution model shown in

Figure 5.

Figure 5. Spark execution model
Note: (https://spark.apache.org/docs/latest/cluster-overview.html)

The proposed algorithm Os-ETL

In the proposed architecture, we consider the schema of the

data warehouse as predefined; followed by the data sources

which are annotated in the tool protégé [35] according to the

needs expressed in the application.

Also in Step 1, the Last updated timestamp (variable used

by the technique change data capture (CDC)), which detects

and collects data changes of interest requires techniques

known as CDC that continuously monitor operational data

sources [36]. The output of this step is represented by a delta

(which represents all changes to be made to the data sources).

The eighty (18) generics conceptual ETL operators [37, 38],

have been used. Algorithm 1 describes the steps of the

proposed Os-ETL system.

Input: Relational database, CSV files, Flat files, Graph

databases (NT files or OWL files): all of the data source

models are aligned to RDF data model, the schema of the

data warehouse (DW) and the eighty (18) conceptual ETL

operators.

Output: Big Data Darehouse deployed over Spark SQL

polystore.

Begin

1. - Create the control module CDC control module

2. - if DW = empty then

 Repeat for each RDF data source

 Load changes into Temp

 Filler source by last updated timestamp

 Result (delta) to ETL engine (create and load a

view)

end if

3. - Built the fragmentation by using Algorithm:P.P

(Graph RDF, NBpartitions)

begin

Load the N-Triple dataset and apply the path

partition algorithm

Specifies end-to-end paths

Generate path groups for each starting vertex

Merges a vertex based on the number of paths

through that vertex

 end;

4. - Make the appropriate transformations

5. - ETL Process and Deployment

End.

4. CASE STUDY

This section describes the tools and software used in this

work as well as a case study is considered to illustrate the

underlying principles of the proposed Os-ETL.

4.1 The ETL Spark engine

Originally Spark was developed in 2009 on UC Berkeley

AMPLab. It became open source in 2010. Spark is a cluster

computing platform designed to be fast and general purpose.

It is highly accessible, offering simple APIs in Python, Java,

R, Scala and SQL, and rich built-in libraries. It also supports

advanced tools, such as Spark Streaming, MLlib for machine

learning, GraphX for processing graphs, and Spark SQL for

processing SQL and structured data. Spark extends the

MapReduce model to support more types of computations,

including interactive queries and streaming processing. One of

the main features offered by Spark for speed is the ability to

perform in-memory calculations [39].

The most components used in Spark are:

4.1.1 Resilient distributed datasets

A resilient distributed dataset (RDD), is the basic

abstraction in Spark, is a read-only collection of objects

partitioned across a number of machines that may be recreated

in the event that a partition is lost. An RDD can be explicitly

cached in memory between machines and used repeatedly in

parallel tasks into MapReduce [40]. The ETL and RDD

processes share a lot of correspondence and similarities: The

activities and record sets that make up an ETL process can be

seen as nodes in a directed acyclic graph (DAG), with the

Algorithm 1 Os-ETL

560

input-output links between the nodes serving as the graph's

edges [41]. In RDD, the created compute set, forms a DAG, it

does not perform any execution, but it prepares for execution

at the end. After the extraction, the ETL process performs

transformations on the data such as (cleaning, filtering,

converting, merging, aggregating...etc.). Thus, the ETL

process fits well with Spark's RDD execution model.

4.1.2 DataFrame and DATASET

DataFrames are collections of structured records that can be

manipulated using Spark's procedural API. They offer a

complete set of functions (select columns, filter, join,

aggregate, etc.) that solve common data analysis problems. A

distributed collection of data is known as a dataset. A dataset

is divided into columns called DataFrames, much like the

tables of a database [40].

4.1.3 Spark's parallel processing

At a high level of abstraction, Spark applications run as

independent processes that reside on clusters and are

coordinated by SparkContext in the main program. Each Spark

application consists of a driver program that executes the user's

main function and initiates several parallel operations on the

cluster. The main steps for running a spark program are:

- The first step in running a Spark program is to submit the

job using spark-submit.

- The spark-submit script is used to launch the program on

a cluster.

- Once the job is submitted, the SparkContext pilot program

is the entry point to Spark.

- SparkContext routes the program to the modules like

Cluster Master Node and RDDs are also created by these

SparkContext driver programs.

- The program is then transmitted to the Cluster Master

Node. Each cluster has a master node that does all the

necessary processing. It then transmits the program to the

worker nodes. The working node is the problem solver. Master

nodes contain executors that run with the SparkContext driver.

4.2 ETL Deployment over a polystore

According to Stonebraker and Çetintemel [42], a polystore

system is a database system having various heterogeneous data

stores and diverse query interfaces. Due to this heterogeneity

of the storage systems in the current Big Data ecosystem,

many dissimilar backends or federated storage engines are

required [2].

Data warehouse storage is impacted by variety, and

polystore are well suited to achieve excellent data access

performance [43]. So, we claim that to get the added value

from business, we have to deal with variety. In our approach,

we employ the Spark SQL hybrid polystore for deploying the

target data warehouse, whose architecture is depicted in Figure

6.

Figure 6. The Spark SQL polystore architecture [44]

4.3 Data-Sets

In order to validate the effectiveness and efficiency of the

proposed system, we illustrate a case study inspired from a

project of the training department of the Ministry of Higher

Education and Research which wants to build a data

warehouse which consists of collecting actionable information

on university students, namely their performance in

publications.

The LUBM (http://swat.cse.lehigh.edu/projects/lubm/.)

benchmark (related to the academic field is used to generate

the data source schemas. It generates data from different

universities, such as each university has number of

departments, professors, students and courses. We conducted

a series of experiments using a data warehouse schema, which

is presented in Figure 7, taken from the LUBM benchmark

related to the academic domain.

A tool named UBA is provided by LUBM to generate data

on the Univ-Bench ontology. These datasets were used to

create simulated graphs based on outside data sources. As

internal sources, we also took into account CSV data sources

and a relational database. These sources are as follows:

- Source 1 is a Neo4j Graph Database with nodes, edges:

Person, Student(name), Publication, Publication Author,

University.

- Source 2 is a CSV file composed of attributes:

Student(name), Publication, University.

- Source 3 is an Oracle database composed of tables and

attributes: Student(name), Course(title), University.

We applied the Os-ETL algorithm and the Scala scripts to

populate the target data warehouse schema deployed on the

Spark SQL polystore.

Figure 7. The data warehouse example

Example of running the Os-ETL Algorithm on CSV file:

Spark ETL scripts import CSV data to several nodes. Spark

begins execution after switching the transforms from RDD to

DAG. A logical execution plan is transformed into a physical

execution plan using a DAG. The DAG is sent to the DAG

scheduler when an activity is invoked. It divided on sub-

processes, which consist of a single task. The program can

then be deployed on many machines through the transmission

of these jobs to the task manager via a cluster manager. The

Spark framework handles processing from a distribution

standpoint. Each DataFrame, whether persistent or not, is a

partitioned collection.

4.4 Metrics

To evaluate any ETL system efficiency, the response time

is one of the important metrics. The response time after

execution of the Os-ETL on the whole data involved in the

561

integration. Another metric is the performance time of the ETL

system, where the performance is measured in term of

scalability. The size of fact data is scaled and the execution

time taken for each size of data is collected and plotted [45].

5. EXPERIMENT AND RESULTS

In this section, we present the evaluation of the proposed

system based on the above case study. Thus, three different

experiences were conducted. The first experiment is a

comparison of the proposed Os-ETL with an existing approach

that does not use a partitioning technique. The second

experiment is also a comparison with an existing approach that

uses partitioning technique. The third experiment considers

the scalability of our solution.

The Hardware used to run the tests was PC having Intel(R)

Core (TM) i5-8350U (1.7 GHz) processor, 8 GB main memory

on a 500 GB SSD hard disc. The software used: Microsoft

Windows 10x64 Professional, Software specifications: Oracle

12c, Apache Spark 2.4.4, Scala 4.7, Neo4j graph database

management system, and Eclipse IDE. All of the software

tools were installed on the local machine for evaluation

purposes.

The data source schemas are from the LUBM benchmark.

We use real world datasets: CSV file, Oracle database and

Neo4j database. From this set we generated five RDF datasets

in N-Triple format as shown in Table 1. The obtained data

warehouse has two stores. For its deployment, we used Oracle

Database 12c as the database backend for store 1 and Neo4j

Graph Database for store 2.

Table 1. Datasets

Concepts (University) RDF (N-Triples)

3 21 057

6 42 115

9 63 173

12 84 231

15 105 289

Experiment 1. We run the Os-ETL algorithm to populate

the target data warehouse schema, and we compare the

response time of our method with previous study [46] (no

partitioning strategy). Figure 8 illustrates the reached results,

where the number of instances is shown in thousands and the

time performance in milliseconds. According to the results

obtained, it appears that the Os-ETL was the most profitable

because the response time of the ETL was divided by 4 (for

example for 35000 instances the response time was 4000 ms)

compared to the approach [46]. The results, clearly show that

the partitioning strategy significantly improves the response

time of the ETL processes.

Experiment 2. We run the Os-ETL algorithm to populate

the target data warehouse schema deployed on the Spark SQL

polystore over two stores (Neo4j Graph Database and Oracle

Database). We measure the time spent in integrating the

instances in each multidimensional concept. Figure 9 presents

the obtained results, where the number of instances is shown

in thousands and the time performance in milliseconds. We

compare the performance of building the target data

warehouse of the Os-ETL with another previous study [45]

(with partitioning strategy). The results demonstrated that the

proposed system is much more efficient.

Figure 8. Os-ETL performance vs. [46] ETL

Figure 9. Os-ETL performance vs. [45] ETL

Figure 10. Os-ETL performance

Experiment 3. We considered the scalability of the Os-ETL

system by varying the size of the data sources and therefore

the number of tasks that run in parallel on the Spark cluster to

process the data. We measure the performance of the proposed

system in terms of scalability.

The size of fact data is scaled from 20 to 120 GB. Figure 10

shows the results. The combined use of CDC, partitioning and

polystore techniques show that the results illustrated in Figure

10 show that the temporal performance of our system is very

good compared to the size of the data set which increases. The

results confirm that this is a good choice for the partitioning

strategy and therefore the present study confirm the results

regarding scalability.

562

6. CONCLUSIONS

In this paper, we have proposed a new solution called Os-

ETL which consist of six steps: (i) extracting and transferring

stream data; (ii) aligning all data sources to the RDF data

model; (iii) partitioning data sources (iv) transforming RDF

data into GraphX data; (v) appropriate transformations on

GraphX data; and (vi) allocation and distribution of the

obtained RDF fragments on the Spark SQL polystore. First,

we have described the components used by Os-ETL which

extracts heterogeneous data sources involving web-data as

external data. Two techniques, the CDC method and the

partitioning strategy were used and analyzed that have greatly

improved the response time of ETL. Also, we proposed the

usage of polystore systems as a hardware solution for

deploying the target data warehouse and ETL processes. Os-

ETL system significantly improves ETL processes and allows

developers to focus on business logic, rather than worrying

about the complex process of extracting-transforming-loading

data in a highly varied environment. The most important

results are related to the performance time of the ETL

processes compared to the previous work, thanks to the

partitioning, in-memory and pipeline strategies. The obtained

results confirm the better performance of the Os-ETL system

in terms of scalability and optimization. As future work, the

proposed system can be extended in several directions. The

system can be designed to support other types of

heterogeneous data sources such as Linked Open Data (LOD).

The system can be tested with several benchmarks such as

TPC-DI.

ACKNOWLEDGMENT

This work has been funded and supported by the General

Direction of Scientific Research and Technological

Development of the Algerian Ministry of Higher Education

and Scientific Research.

The authors would like to thank all the team of the LRIT

(Laboratoire de recherche en informatique de Tlemcen)

Laboratory of the University of Tlemcen for their help to carry

out the experiments.

REFERENCES

[1] Zdravevski, E., Lameski, P., Apanowicz, C., Ślȩzak, D.

(2020). From Big Data to business analytics: The case

study of churn prediction. Applied Soft Computing, 90:

106164. https://doi.org/10.1016/j.asoc.2020.106164

[2] Meehan, J., Aslantas, C., Zdonik, S., Tatbul, N., Du, J.

(2017). Data ingestion for the connected world. In CIDR,

17: 8-11.

[3] Du, J., Meehan, J., Tatbul, N., Zdonik, S. (2017).

Towards dynamic data placement for polystore ingestion.

In Proceedings of the International Workshop on Real-

Time Business Intelligence and Analytics, pp. 1-8.

https://doi.org/10.1145/3129292.3129297

[4] Berkani, N., Bellatreche, L., Guittet, L. (2018). ETL

processes in the era of variety. In: Hameurlain, A.,

Wagner, R., Benslimane, D., Damiani, E., Grosky, W.

(eds) Transactions on Large-Scale Data- and

Knowledge-Centered Systems XXXIX. Lecture Notes in

Computer Science, vol. 11310. Springer, Berlin,

Heidelberg. https://doi.org/10.1007/978-3-662-58415-

6_4

[5] Stonebraker, M., Abadi, D., DeWitt, D.J., Madden, S.,

Paulson, E., Pavlo, A., Rasin, A. (2010). MapReduce and

parallel DBMSs: Friends or foes? Communications of

the ACM, 53(1): 64-71.

https://doi.org/10.1145/1629175.1629197

[6] Longo, A., Giacovelli, S., Bochicchio, M.A. (2014).

Fact–Centered ETL: A proposal for speeding business

analytics up. Procedia Technology, 16: 471-480.

https://doi.org/10.1016/j.protcy.2014.10.114

[7] Masouleh, M.F., Kazemi, M.A., Alborzi, M., Eshlaghy,

A.T. (2016). Optimization of ETL process in data

warehouse through a combination of parallelization and

shared cache memory. Engineering, Technology &

Applied Science Research, 6(6): 1241-1244.

https://doi.org/10.48084/etasr.849

[8] Salloum, S., Dautov, R., Chen, X., Peng, P.X., Huang,

J.Z. (2016). Big data analytics on Apache spark.

International Journal of Data Science and Analytics, 1:

145-164. https://doi.org/10.1007/s41060-016-0027-9

[9] Bajaber, F., Elshawi, R., Batarfi, O., Altalhi, A., Barnawi,

A., Sakr, S. (2016). Big data 2.0 processing systems:

Taxonomy and open challenges. Journal of Grid

Computing, 14: 379-405.

https://doi.org/10.1007/s10723-016-9371-1

[10] Belayadi, Y., Khababa, A., Attia, A., Maza, S. (2022).

An effective method based on bi-clustering and

association rules for user activity analysis in location-

based social network. Ingénierie des Systèmes

d’Information, 27(6): 855-864.

https://doi.org/10.18280/isi.270601

[11] Alsanad, A.A., Chikh, A., Mirza, A. (2019). Multilevel

ontology framework for improving requirements change

management in global software development. IEEE

Access, 7: 71804-71812.

https://doi.org/10.1109/ACCESS.2019.2916782

[12] Chen, J., Chen, Y., Du, X., Li, C., Lu, J., Zhao, S., Zhou,

X. (2013). Big data challenge: A data management

perspective. Frontiers of Computer Science, 7(2): 157-

164. https://doi.org/10.1007/s11704-013-3903-7

[13] Vassiliadis, P., Simitsis, A. (2008). Near real time ETL.

In: Kozielski, S., Wrembel, R. (eds) New Trends in Data

Warehousing and Data Analysis. Annals of Information

Systems, vol 3. Springer, Boston, MA.

https://doi.org/10.1007/978-0-387-87431-9_2

[14] Bornea, M.A., Deligiannakis, A., Kotidis, Y., Vassalos,

V. (2011). Semi-Streamed Index Join for near-real time

execution of ETL transformations. In 2011 IEEE 27th

International Conference on Data Engineering, Hannover,

Germany, pp. 159-170.

https://doi.org/10.1109/ICDE.2011.5767906

[15] Muddasir, N.M., Raghuveer, K. (2017). Study of

methods to achieve near real time ETL. In 2017

International Conference on Current Trends in Computer,

Electrical, Electronics and Communication (CTCEEC),

Mysore, India, pp. 436-441.

https://doi.org/10.1109/CTCEEC.2017.8455002

[16] Biswas, N., Mondal, K.C. (2022). Integration of ETL in

cloud using spark for streaming data. In: Mandal, J.K.,

De, D. (eds), Advanced Techniques for IoT Applications.

EAIT 2021. Lecture Notes in Networks and Systems, vol.

292. Springer, Singapore. https://doi.org/10.1007/978-

981-16-4435-1_18

[17] Berkani, N., Bellatreche, L., Ordonez, C. (2018). ETL-

563

https://doi.org/10.1109/ICDE.2011.5767906

aware materialized view selection in semantic data

stream warehouses. In 2018 12th International

Conference on Research Challenges in Information

Science (RCIS), Nantes, France, pp. 1-11.

https://doi.org/10.1109/RCIS.2018.8406668

[18] Boury-Brisset, A.C. (2013). Managing semantic big data

for intelligence. In Stids, pp. 41-47.

[19] Pareek, A., Khaladkar, B., Sen, R., Onat, B., Nadimpalli,

V., Lakshminarayanan, M. (2018). Real-time ETL in

Striim. In Proceedings of the International Workshop on

Real-Time Business Intelligence and Analytics, pp. 1-10.

https://doi.org/10.1145/3242153.3242157

[20] Bansal, S.K. (2014). Towards a semantic extract-

transform-load (ETL) framework for big data integration.

In 2014 IEEE International Congress on Big Data,

Anchorage, AK, USA, pp. 522-529.

https://doi.org/10.1109/BigData.Congress.2014.82

[21] Ali, S.M.F., Wrembel, R. (2017). From conceptual

design to performance optimization of ETL workflows:

current state of research and open problems. The VLDB

Journal, 26(6): 777-801. https://doi.org/10.1007/s00778-

017-0477-2

[22] Thomsen, C., Pedersen, T.B. (2011). Easy and effective

parallel programmable ETL. In Proceedings of the ACM

14th International Workshop on Data Warehousing and

OLAP, pp. 37-44.

https://doi.org/10.1145/2064676.2064684

[23] Liu, X., Iftikhar, N. (2015). An ETL optimization

framework using partitioning and parallelization. In

Proceedings of the 30th Annual ACM Symposium on

Applied Computing, pp. 1015-1022.

https://doi.org/10.1145/2695664.2695846

[24] Liu, X., Thomsen, C., Pedersen, T.B. (2013). ETLMR: A

highly scalable dimensional ETL framework based on

MapReduce. Transactions on Large-Scale Data-and

Knowledge-Centered Systems VIII: Special Issue on

Advances in Data Warehousing and Knowledge

Discovery, 1-31. https://doi.org/10.1007/978-3-642-

37574-3_1

[25] Ma, K., Yang, B. (2015). Log-based change data capture

from schema-free document stores using MapReduce. In

2015 International conference on cloud technologies and

applications (CloudTech), Marrakech, Morocco, pp. 1-6.

https://doi.org/10.1109/CloudTech.2015.7336969

[26] Valêncio, C.R., Marioto, M.H., Zafalon, G.F.D.,

Machado, J.M., Momente, J.C. (2013). Real time delta

extraction based on triggers to support data warehousing.

In 2013 International Conference on Parallel and

Distributed Computing, Applications and Technologies,

pp. 293-297. https://doi.org/10.1109/PDCAT.2013.52

[27] Duggan, J., Elmore, A.J., Stonebraker, M., Balazinska,

M., Howe, B., Kepner, J., Zdonik, S. (2015). The

BigDAWG Polystore system. ACM SIGMOD Record,

44(2): 11-16. https://doi.org/10.1145/2814710.2814713

[28] Gurajada, S., Seufert, S., Miliaraki, I., Theobald, M.

(2014). TriAD: A distributed shared-nothing RDF engine

based on asynchronous message passing. In Proceedings

of the 2014 ACM SIGMOD International Conference on

Management of Data, pp. 289-300.

https://doi.org/10.1145/2588555.2610511

[29] Huang, J., Abadi, D.J., Ren, K. (2011). Scalable

SPARQL querying of large RDF graphs. Proceedings of

the VLDB Endowment, 4(11): 1123-1134.

https://doi.org/10.14778/3402707.3402747

[30] Karypis, G., Kumar, V. (1997). METIS: A software

package for partitioning unstructured graphs,

partitioning meshes, and computing fill-reducing

orderings of sparse matrices. Computer Science &

Engineering (CS&E) Technical Reports [749].

[31] Al-Ghezi, A., Wiese, L. (2018). Adaptive workload-

based partitioning and replication for RDF graphs. In:

Hartmann, S., Ma, H., Hameurlain, A., Pernul, G.,

Wagner, R. (eds) Database and Expert Systems

Applications. DEXA 2018. Lecture Notes in Computer

Science, vol. 11030. Springer, Cham.

https://doi.org/10.1007/978-3-319-98812-2_21

[32] Wu, B., Zhou, Y., Yuan, P., Liu, L., Jin, H. (2015).

Scalable SPARQL querying using path partitioning. In

2015 IEEE 31st International Conference on Data

Engineering, Seoul, Korea (South), pp. 795-806.

https://doi.org/10.1109/ICDE.2015.7113334

[33] Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D.,

Franklin, M.J., Stoica, I. (2014). Graphx: Graph

processing in a distributed dataflow framework. In 11th

{USENIX} Symposium on Operating Systems Design

and Implementation ({OSDI} 14), pp. 599-613.

[34] Boukhari, I., Bellatreche, L., Jean, S. (2012). An

ontological pivot model to interoperate heterogeneous

user requirements. In: Margaria, T., Steffen, B. (eds)

Leveraging Applications of Formal Methods,

Verification and Validation. Applications and Case

Studies. ISoLA 2012. Lecture Notes in Computer

Science, vol 7610. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-34032-1_35

[35] Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.A.

(2004). The Protégé OWL plugin: An open development

environment for semantic web applications. In: McIlraith,

S.A., Plexousakis, D., van Harmelen, F. (eds). The

Semantic Web – ISWC 2004. ISWC 2004. Lecture Notes

in Computer Science, vol. 3298. Springer, Berlin,

Heidelberg. https://doi.org/10.1007/978-3-540-30475-

3_17

[36] Jörg, T., Deßloch, S. (2008). Towards generating ETL

processes for incremental loading. In Proceedings of the

2008 International Symposium on Database Engineering

& Applications, pp. 101-110.

https://doi.org/10.1145/1451940.1451956

[37] Skoutas, D., Simitsis, A. (2006). Designing ETL

processes using semantic web technologies. In

Proceedings of the 9th ACM International Workshop on

Data Warehousing and OLAP, pp. 67-74.

https://doi.org/10.1145/1183512.1183526

[38] Berkani, N., Bellatreche, L., Benatallah, B. (2016). A

value-added approach to design BI applications. In:

Madria, S., Hara, T. (eds). Big Data Analytics and

Knowledge Discovery. DaWaK 2016. Lecture Notes in

Computer Science, vol. 9829. Springer, Cham.

https://doi.org/10.1007/978-3-319-43946-4_24

[39] Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S.,

Stoica, I. (2010). Spark: Cluster computing with working

sets. HotCloud, 10(10-10): 95.

[40] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J.,

McCauly, M., Franklin, M.J., Shenker, S., Stoica, I.

(2012). Resilient distributed datasets: A fault-tolerant

abstraction for in-memory cluster computing. In

Presented as part of the 9th {USENIX} Symposium on

Networked Systems Design and Implementation ({NSDI}

12), pp. 15-28.

564

[41] Vassiliadis, P., Simitsis, A. (2009). Extraction,

transformation, and loading. Encyclopedia of Database

Systems, 10.

[42] Bimonte, S., Gallinucci, E., Marcel, P., Rizzi, S. (2022).

Logical design of multi-model data warehouses.

Knowledge and Information Systems, 66: 1067-1103.

https://doi.org/10.1007/s10115-022-01788-0

[43] Stonebraker, M., Çetintemel, U. (2018). "One size fits

all" an idea whose time has come and gone. In Making

Databases Work: The Pragmatic Wisdom of Michael

Stonebraker, pp. 441-462.

https://doi.org/10.1145/3226595.3226636

[44] Bondiombouy, C., Valduriez, P. (2016). Query

processing in multistore systems: An overview.

International Journal of Cloud Computing, 5(4): 309-346.

https://doi.org/10.1504/IJCC.2016.080903

[45] Berkani, N., Bellatreche, L. (2018). Streaming ETL in

polystore era. In: Vaidya, J., Li, J. (eds). Algorithms and

Architectures for Parallel Processing. ICA3PP 2018.

Lecture Notes in Computer Science, vol 11336. Springer,

Cham. https://doi.org/10.1007/978-3-030-05057-3_42

[46] Berkani, N., Bellatreche, L., Khouri, S. (2013). Towards

a conceptualization of ETL and physical storage of

semantic data warehouses as a service. Cluster

Computing, 16(4): 915-931.

https://doi.org/10.1007/s10586-013-0266-7

565

