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In the realm of social recommendation, the utilization of Graph Convolution Networks 

(GCNs) has proven effective for embedding propagation, allowing user-item implicit social 

relations to be modeled efficiently. However, the shortcomings of these existing models lie 

in their focus on local neighbors and their lack of simulation of recursive diffusion in a 

broader social network, thus limiting their performance potential. To address this gap, a 

novel GCN framework, herein referred to as the Trust and Influence Graph Convolution 

Network (TIGCN), is proposed. This framework aims to improve the robustness of social 

recommendation systems by utilizing implicit social relations and user-item interactions. 

Through the construction of user-user trust and influence graphs derived from a bipartite 

social network, influential users are identified using the Structural Holes method. The 

TIGCN framework then employs these inter-user relationships, including trust and influence 

features, to collectively navigate the propagation of user interests and social relations. The 

effectiveness of the TIGCN is demonstrated through experiments conducted on real-world 

datasets such as Ciao, Epinions, and FilmTrust. Results show that the TIGCN offers 

significant performance improvements over other state-of-the-art baselines like FST, 

FSTID, and SocialLGN. The metrics indicating these improvements include increased 

Precision@5 (up to 2.08%), Recall@5 (up to 2.7%), NDCG@5 (up to 2.28%), 

Precision@10 (up to 2.65%), Recall@10 (up to 2.87%), and NDCG@10 (up to 2.82%). In 

conclusion, the introduction of the TIGCN has opened up promising avenues for the 

enhancement of social recommendation through the incorporation of implicit social relations 

and the innovative use of GCNs. Future studies should focus on improving the scalability 

and effectiveness of the TIGCN framework to maximize its contribution to social 

recommendation systems. 
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1. INTRODUCTION

The growing interest in utilizing social relations for 

recommender systems has been observed in recent years [1]. 

Social relations introduce a novel dimension to 

recommendations, as users often seek advice from trustworthy 

friends during e-commerce transactions [2]. Traditional 

recommender systems typically derive low-dimensional latent 

representations solely from user-item interaction data. 

However, when user-item interaction data is insufficient, the 

system's representation ability is significantly compromised, 

resulting in the data sparsity problem [3]. The user-item 

bipartite graph, derived from the interaction matrix, is too 

sparse for Graph Neural Networks (GNN) to effectively model 

user/item representations. The performance of these 

traditional recommender systems is hindered by the sparsity of 

bipartite graphs and the unavailability of social graphs in most 

real-world scenarios [4]. 

For instance, consider a social relation graph of 4 users and 

4 items connected by 7 edges, as depicted in Figure 1. Each 

edge corresponds to explicit feedback (i.e., user-item ratings) 

ranging from 1 to 5 stars, which represent the user's preference 

for the connected item. Users u1 and u2 have the same rating 

for item i2, indicating a similarity in preference, and thus, 

making u1 a second-order neighbor (i.e., friend) of u2 in 

methods based on the bipartite graph. According to their 

browsing history, u2 is more likely to be interested in item i1, 

while u4 is more likely to be interested in item i2. Therefore, 

modeling the fine-grained reasoning of interactions 

contributes to the provision of personalized recommendation 

services for users u2 and u4. This conclusion contradicts the 

fact that u1 and u2 have different preferences and should not be 

considered friends. Consequently, many GCN-based 

recommendation methods employ social graphs to alleviate 

the data sparsity problem and enhance performance. 

In social recommendations, user preferences can be easily 

influenced by their friends [5], and recommendation accuracy 

can be effectively improved by mining social relationships [6]. 

GCNs have demonstrated their effectiveness in social 

recommendation due to their capability to efficiently represent 

social network relationships. Neural networks are employed to 

aggregate feature representations from the social network 

graph [7]. To address the data sparsity problem, various 

studies have been conducted, focusing on enhancing the 
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recommendation process using additional data such as trust 

relationships between users. Related work leverages social 

links between users to complement sparse rating data and 

considers both users' ratings and the preferences of trusted 

neighbors to improve user preference prediction [8]. 

 

 
 

Figure 1. An illustration of recommendation for users based 

only on the ratings 

 

For example, Fan et al. [1] first learned the user latent factor 

and item latent factor using GNN, then concatenated the two 

latent factors for the final rating prediction. In user modeling, 

the latent representation of the user is the concatenation of 

item aggregation and social aggregation.  

Song et al. [9] considered a dynamic scenario in which 

social relationships dynamically influence users' interests and 

proposed a session-based social recommendation algorithm 

that models dynamic interests and dynamic social influences.  

Huo et al. [10] introduced a new GNN-based trust 

evaluation method called TrustGNN, smartly integrating the 

propagative and composable nature of trust graphs into a GNN 

framework for better trust evaluation.  

Liao et al. [3] proposed a SocialLGN system, which 

extended LightGCN to make it more suitable for social 

recommendation problems. A light graph convolution 

network-based representation propagation mechanism was 

designed for the user-item interaction graph and social graph 

simultaneously.  

Guo et al. [11] suggested a novel trust-aware 

recommendation method based on heterogeneous multi-

relational graph fusion, termed T-MRGF, which established 

the user–user trust relation graph, user–item interaction graph, 

and item–item knowledge graph. The user feature and item 

feature, obtained from the user–item graph, were used as 

inputs for the user-related graph and the item-related graph, 

respectively. Fusion was achieved through cascading feature 

vectors before and after feature propagation.  

Canturk et al. [12] developed a method for predicting trust 

scores of Location-Based Social Networks (LBSN) users and 

proposed a trust-aware recommendation technique, TLoRW, 

to recommend locations to users based on their previous 

check-ins, social network, and predicted trust scores of users. 

In the proposed model, global trust scores of users were 

generated based on check-in history. In addition to trust, 

spatial context was another important aspect of TLoRW to 

generate location recommendations based on the user's current 

location.  

Yang et al. [13] aimed to empower the GNN model with the 

ability to tackle the social inconsistency problem and proposed 

sampling consistent neighbors by relating sampling 

probability with consistency scores between neighbors. 

Moreover, the relation attention mechanism was employed to 

assign consistent relations with high importance factors for 

aggregation. These GCN-based methods obtain meaningful 

representations of nodes/edges in a network by integrating 

neighborhood information of nodes/edges. On the other hand, 

an online social network based on social trust can be thought 

of as a trust graph where nodes represent social users and 

edges trust relations between them. The edge in the graph can 

represent the trust relationship between two nodes. Therefore, 

leveraging the powerful representation learning capabilities of 

GCN for trust evaluation tasks is significant [10]. 

Despite the effectiveness of GCN-based social 

recommender models in achieving state-of-the-art 

recommendation performance, two key challenges remain 

unaddressed in existing methods. 

Firstly, although trust relationships between users have been 

shown to enhance the effectiveness of recommendation 

methods, the trust relationships matrix is often sparse [14]. The 

majority of user feedback is explicit (e.g., ratings, 

likes/dislikes) rather than implicit (e.g., social trust, influence). 

Additionally, the neighborhood aggregation scheme in GCNs 

amplifies the impact of interactions on representation learning, 

making the learning more susceptible to interaction noises. 

This is due to the fact that the user-item interaction graph and 

user-user social graph are modeled by the same neural 

operations, which may be unnecessary. Although identifying 

users' friends based on trust and influence information is more 

efficient and interpretable than relying on ratings, the 

effectiveness of these methods is compromised by the 

unavailability of explicit social graphs in many real-world 

scenarios. Furthermore, calculating users' trust values is a 

critical step in the social recommendation process. As trust 

originates in the subjective experiences of individuals, the 

existing trust information cannot fully extract the implicit user 

preference information in social networks. Therefore, 

accurately measuring trust relationships and examining their 

role in item recommendation is essential. Exploiting the 

implicit social relations between users is particularly important 

for modeling a new user representation. Furthermore, 

considering the importance of different user-item interactions 

in the user-item interaction graph and social relations (i.e., 

social trust and influence) is crucial for establishing item 

representations. 

Secondly, current social recommendation models primarily 

develop static models, leveraging local neighbors of each user 

without simulating the recursive diffusion in the global social 

network, leading to suboptimal recommendation performance. 

These models neglect the potential embedding for each user, 

which is influenced by their trusted users and, in turn, the 

social connections of those trusted users. As social influence 

recursively propagates and diffuses throughout the social 

network, the interests of each user change in the recursive 

process. Contrary to the performance improvement achieved 

by considering the first-order local neighbors of each user, it 

is argued that the social diffusion should exhibit a dynamic 

recursive effect on each user's embedding rather than 

occurring at one time. Precisely simulating the recursive 

diffusion process in the global social network would better 

model each user's embedding, thus improving social 

recommendation performance. Social influence analysis [15] 

involves evaluating the impact of each user on their 

information or social behavior according to a certain standard, 

aiming to identify individuals with significant influence within 

their group or social network. For example, as depicted in 
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Figure 2, social networks often contain multiple mutual trust 

and influence relations. These relations are typically 

asymmetric, meaning that two users might have trust relations 

and influences in opposite directions. Specifically, in Figure 

2(a), user 𝑢1 and 𝑢5 trust each other, while in Figure 2(b), user

𝑢1 is trusted by user 𝑢5, 𝑢2, and 𝑢6 and influences them.

Figure 2. An illustration of implicit social relations (trust and 

influence) for social recommendation through a toy example 

To address the aforementioned shortcomings, a novel Graph 

Convolution Network framework with implicit Trust and 

Influence (TIGCN) is proposed. This approach augments user-

item representations by exploiting implicit social relations of 

users and items in the predictive model, effectively alleviating 

the sparsity of user behavior data. In contrast to traditional 

GCNs that solely consider the user-item interaction graph for 

recommendation, the construction of user-user trust graph and 

user-user influence graph is based on user-user bipartite graph 

and embeddings to exploit inter-user implicit relations. Such a 

module could collaboratively explore the propagation process 

of user interests and social relations, thereby enhancing the 

robustness of recommendation systems. The contributions of 

this work can be summarized as follows: 

(1) A novel Graph Convolution Network framework with 
implicit Trust and Influence (TIGCN) is proposed, consisting 

of three layers: the embedding layer, multiple embedding 

propagation, and the model prediction layer. TIGCN enhances 

user-item representations by exploiting user-user implicit 

social relations (i.e., social trust and influences) among entities 

in the predictive model, thereby better alleviating interaction 

noise issues and data sparsity. 

(2) Two adjacency matrices are introduced, considering 
user trust and influences as two bipartite graphs. This module 

can explore the propagation process of user trust and social 

influence, thus improving the robustness of recommendation 

systems. Moreover, a novel trust measurement model is 

employed to quantify implicit trust in social networks. The 

trust value encompasses three aspects: user interaction, item 

rating, and user preference. Additionally, the most influential 

users are determined by the SH method, effectively addressing 

the extreme data sparsity of recommendation systems. 

(3) A series of experiments are conducted on real-world 
datasets, namely Ciao, Epinions, and FilmTrust. Extensive 

experiments demonstrate that TIGCN significantly 

outperforms various state-of-the-art baselines, such as FSTID, 

LightGCN, and SocialLGN. Further analysis confirms the 

superior representation ability of the TIGCN recommendation 

framework in alleviating data sparsity. 

2. METHOD

The herein proposed Temporally Interacting TIGCN is 

composed of three major components: an embedding layer, an 

embedding propagation layer, and a prediction layer (as shown 

in Figure 3). 

(1) The embedding layer, which serves as the foundation,

allows for the initialization of user and item embeddings. 

These are established in accordance with a probability 

conforming to a standard normal distribution. This 

initialization lays the groundwork for potential user-item 

collaborative relations, which are iteratively optimized during 

subsequent training stages of the recommendation model. 

(2) The embedding propagation layer, following the

initialization, administers graph convolution operations to the 

user and item embeddings. These operations are performed on 

three distinct graphs: user-item interaction graph, user-user 

trust graph, and user-user influence graph. This approach, 

which is inspired by the LightGCN methodology [16], enables 

the propagation of embeddings by eliminating linear 

transformation and non-linear activation operations. 

(3) Lastly, the prediction layer operates to aggregate the

refined embeddings received from different propagation layers, 

producing an affinity score for each user-item pair. These 

scores serve as the final output of the model, predicting the 

results of the recommendation. 

Model training is a crucial element in the successful 

application of the TIGCN and is detailed below. 

For the effectiveness of the proposed model, recent works 

are considered which exploit user-item relationships for 

improving the quality of representation. The process of 

collaborative information enrichment is carried out by 

considering implicit information from multi-hop neighbors. 

Recommendations systems today, in accordance with the 

user's history, are personalized and recommend based on 

closely related entities. As such, it is essential to consider user-

specific components for achieving fruitful results in the 

recommendation model. 

In conclusion, the TIGCN model offers a comprehensive 

approach to user-item recommendation systems. It initiates the 

user and item embeddings in accordance with a probability 

model, subsequently applies graph convolution operations to 

them, and then aggregates the refined embeddings to produce 

prediction scores. This model, which encompasses current 

research in the field, aims to offer effective user-specific 

recommendations by employing a deep understanding of user-

item relationships. 

2.1 Embedding layer 

Pioneered by contemporary recommendation models [16, 

17], an initial step involves the representation of each user u 

and item i as embedding vectors 𝑒𝑢 ∈ ℝ
𝑑  and 𝑒𝑖 ∈ ℝ

𝑑

respectively. Here, d signifies the embedding size. An 

expression of the embeddings of N users and M items can be 

encapsulated by matrix E, as denoted by: 

𝐸 = [𝑒𝑢1 , ⋯ 𝑒𝑢𝑁, 𝑒𝑖1 , ⋯ 𝑒𝑖𝑀] (1) 

The initialization stage of the embeddings primes the user-

item potential collaborative signals, which are subsequently 

captured in the model's training process. This process includes 

mapping the graph's node feature into a low-dimensional space, 

iteratively optimizing the embeddings, and updating the user 
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and item embedding matrices via aggregation and propagation.  

 

2.2 Embedding propagation layers 

 

An accurate representation of high-order user-item 

interaction, drawn from explicit user-item relationships and 

implicit social connections, poses a significant challenge in 

standard recommendation scenarios. Building upon the recent 

LightGCN concept [16], this section proposes an enhanced 

user-item representation methodology that aligns a user-item 

interaction graph (as depicted in Figure 4(b)) and social 

relations inferred from user-user trust and influence graphs (as 

illustrated in Figure 4(a)). These methods significantly elevate 

the accuracy of the recommendation system. 

Presented in Figure 3 is the newly designed TIGCN model. 

This model first computes the trust value based on the initial 

trust value and each user's preference degree, thus forming the 

trust network. Subsequently, the saliency histogram (SH) is 

utilized to identify key nodes within the social network, 

allocating them into the influential users' set. The final part of 

this section outlines the update processes of user and item 

embeddings. 

 

 
 

Figure 3. An illustration of our TIGCN model architecture 

 

 
(a) 
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(b) 

 

Figure 4. An illustration of embedding propagation layers 

 

2.2.1 Calculation of users’ trust value 

In the process of social recommendation, the trust value 

calculation between users serves as a pivotal step. The origin 

of trust stems from an individual's subjective experience. It is 

deduced that a higher degree of trust between user u and user 

v equates to a greater similarity between them. The trust value 

between users is shaped by the nature and results of their 

interaction. A successful interaction enhances the trust value 

and vice versa. Additionally, preference differences due to 

differing user interests over items vary the trust influence 

resulting from interactions. 

To accommodate this, a trust relation measurement model 

considering users' interaction information and preference is 

utilized. This accounts for users' scoring and preference degree 

over various items comprehensively. The model is based on 

the following two hypotheses: 

(1) An interaction is assumed between two users if they 

have both interacted with a single item. 

(2) An interaction's success or failure is determined by 

whether the score of item i, given by users u and v, is higher 

or lower than each user's average score. Here, rv,i, rv,i indicate 

the evaluations of item i by users u and v, respectively, while 

u and v denote the average scores of user u and v, respectively. 

 

{
𝑠𝑢𝑐𝑐𝑒𝑠𝑠,    (𝑟𝑣,𝑖 − �̅�) ∗ (𝑟𝑢,𝑖 − �̅�) ≥ 0

𝑓𝑎𝑖𝑙𝑢𝑟𝑒,     (𝑟𝑣,𝑖 − �̅�) ∗ (𝑟𝑢,𝑖, −�̅�) < 0
 (2) 

 

The trust measurement of user u over user v, given that they 

have at least one common item (Iu∩Iv ≠φ), is derived as follows:  

 

𝑇(𝑢, 𝑣) = 𝐼𝑛𝑖𝑡(𝑢, 𝑣) 

×
∑ 𝑃𝑟𝑒(𝑢, 𝑖)𝑖∈𝑠𝑢𝑐𝑐𝑒𝑠𝑠 −∑ 𝑃𝑟𝑒(𝑢, 𝑖)𝑖∈𝑓𝑎𝑖𝑙𝑢𝑟𝑒

∑ 𝑃𝑟𝑒(𝑢, 𝑖)𝑖∈𝑠𝑢𝑐𝑐𝑒𝑠𝑠 −∑ 𝑃𝑟𝑒(𝑢, 𝑖)𝑖∈𝑓𝑎𝑖𝑙𝑢𝑟𝑒

 
(3) 

 

The initial trust value, denoted as 𝐼𝑛𝑖𝑡(𝑢, 𝑣), is calculated 

using: 

 

𝐼𝑛𝑖𝑡(𝑢, 𝑣) =
min (|𝐼𝑢||𝐼𝑣|, 𝐷𝑢)

𝐷𝑢
 (4) 

The threshold value Du= √|𝐼𝑢|  indicates the minimum 

interaction times for two users to fully trust each other. 

𝑃𝑟𝑒(𝑢, 𝑣) is the preference degree of user u over item i: 

 

𝑃𝑟𝑒(𝑢, 𝑖) =
∑ 𝑠𝑖𝑚(𝑢, 0)𝑜∈𝑈𝑖

𝑈𝑖
 (5) 

 

𝑈𝑖 represents the set of users who have already scored item 

i. The greater the similarities user u shares with others in this 

set, the more he prefers item i. The classic measurement of two 

variables' relevance by the Pearson Correlation Coefficient 

(PCC) formula, proposed by Karl Pearson in the 1880s [18], is 

utilized to estimate these similarities. With the introduction of 

the common tests' number weight parameters and the PCC 

adjustment between 0 and 1, the similarity formula is modified 

as: 
 

𝑠𝑖𝑚(𝑢, 𝑜) 

=

(

 
1

2
+

∑ (𝑟𝑢,𝑖 − �̅�)(𝑟𝑜,𝑖 − �̅�)𝑖∈𝐼𝑈∩𝐼𝑂

2 ∗ √∑ (𝑟𝑢,𝑖 − �̅�)
2

𝑖∈𝐼𝑈∩𝐼𝑂
∑ (𝑟𝑜,𝑖 − �̅�)

2
𝑖∈𝐼𝑈∩𝐼𝑂 )

  

∗
𝐼𝑢 ∩ 𝐼𝑜
𝐼𝑢

 

(6) 

 

Different weights are assigned to different items based on 

the user's preference in successful or unsuccessful interactions. 

Therefore, the final trust value 𝑇(𝑢, 𝑣) is obtained using Eq. 

(2). 

 

2.2.2 Identification of influential users 

The prevailing Structural Hole (SH) theory offers profound 

insights into identifying pivotal nodes within a social network, 

due to its extensive application across various fields. 

Developed initially by Burt, this theory elucidates the 

emergence of disparities in social capital by proposing the 

concept of structural holes, which refer to voids in the flow of 

information among individuals who are linked to a common 

entity, but remain unconnected to one another [19]. These 

holes imply that distinct information flows are accessible to 
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individuals positioned on either side of the hole. 

The computation of SH is relatively intricate, entailing two 

key indices: Burt's index and the Betweenness Centrality index. 

Burt's index incorporates four dimensions-Effective Size, 

Efficiency, Constraint, and Hierarchy-with Constraint playing 

a critical role [19]. On the other hand, the Betweenness 

Centrality index primarily refers to Freeman's overall network 

betweenness centrality [20], furthering its development to 

signify that a node's likelihood of occupying a structural hole 

position is higher if the node is situated on the shortest path of 

numerous other node pairs. 

The constraint denotes the node's potential to utilize SH 

within its network, designating the evaluation criterion as the 

node's dependency value on other nodes. It can be represented 

by the following equation: 

𝐶(𝑖) = ∑ (𝑝(𝑖, 𝑗) + ∑ 𝑝(𝑗, 𝑞) ∗ (𝑞, 𝑖)

𝑞∈𝑇𝑗
−

)

2

𝑗∈𝑇𝑖
−

𝑖 ≠ 𝑞 ≠ 𝑗 

(7) 

where, 𝑇𝑖
− represents users who trust user i. 𝑝(𝑖, 𝑗) symbolizes

the proportion of energy that node i dedicates to sustaining its 

relationship with node j, compared to its total energy. 

𝑝(𝑖, 𝑗) =
𝑍𝑗𝑖

∑ 𝑍𝑗𝑖𝑗∈𝑇𝑖
−

(8) 

where, the connection between node j and node i is represented 

by < 𝑗, 𝑖 > ; when a connection exists, it is defined as 1, 

otherwise, it is 0. 

𝑍𝑗𝑖 = {
1, < 𝑗, 𝑖 >≠ 𝑛𝑢𝑙𝑙
0, < 𝑗, 𝑖 >≠ 𝑛𝑢𝑙𝑙

(9) 

The term ∑ 𝑝(𝑗, 𝑞) ∗ (𝑞, 𝑖)𝑞∈𝑇𝑗
−  is determined by the count 

of bridging node q between nodes i and j. Due to the 

strengthening ties among nodes i, j, q, closed triangles are 

increasingly formed, which hinders the widespread 

dissemination of information. 

Accounting for the effect of i's in-degree and out-degree, the 

Eq. (7) is revised to: 

𝐶(𝑖) = 

(∑ (𝑝(𝑖, 𝑗) + ∑ 𝑝(𝑗, 𝑞) ∗ (𝑞, 𝑖)𝑞∈𝑇𝑗
− )

2

) ∗
|𝑇𝑗
+|

|𝑇𝑗
+|+|𝑇𝑗

−|
𝑗∈𝑇𝑖

−

𝑖 ≠ 𝑞 ≠ 𝑗 

(10) 

2.2.3 Update processes of the user embedding and item 

embedding 

The updates to the user and item embeddings are performed 

using the user-item interaction graph, the user trust graph, and 

the user influence graph. Where, qu
(k), pu

(k) and Ru
(k) represent 

the user embeddings from the last layer, while ei
(k) denotes the 

item embedding. 

𝑞𝑢
(𝑘) = ∑

1

√|𝑁𝑢
𝐼 |√|𝑁𝑖

𝐼|

𝑒𝑖
(𝑘−1)

𝑖∈𝑁𝑢
𝐼

(11) 

𝑝𝑢
(𝑘) = ∑

1

√|𝑁𝑢
𝑇|√|𝑁𝑣

𝑇|
𝑒𝑢
(𝑘−1)

𝑣∈𝑁𝑢
𝑇

(12) 

𝑡𝑢
(𝑘) = ∑

1

√|𝑁𝑢
𝑆|√|𝑁𝑣

𝑆|
𝑒𝑢
(𝑘−1)

𝑣∈𝑁𝑢
𝑆

(13) 

𝑒𝑖
(𝑘) = ∑

1

√|𝑁𝑢
𝐼 |√|𝑁𝑖

𝐼|

𝑒𝑢
(𝑘−1)

𝑢∈𝑁𝑖
𝐼

(14) 

where, 𝑁𝑢
𝐼 , 𝑁𝑢

𝑇, and 𝑁𝑢
𝑆 denote the user's neighborhood in the

user-item interaction graph, user trust graph, and user-item 

interaction graph, respectively. The aggregation of 

embeddings of the user's neighboring nodes in the three graphs 

is used to update the user's embedding. 

A fusion of the different user embeddings from the three 

graphs is then used to generate eu
(k), employing the following 

equations: 

�̃�𝑢
(𝑘)
= 𝑊4 (𝜎(𝑊1𝑞𝑢

(𝑘)) ||𝜎(𝑊2𝑝𝑢
(𝑘))|| 𝜎(𝑊3𝑡𝑢

(𝑘))) (15) 

𝑒𝑢
(𝑘)
=

�̃�𝑢
(𝑘)

‖�̃�𝑢
(𝑘)
‖
2

(16) 

The tanh function is denoted by 𝜎 , with W1, W2, W3  ∈
ℝ𝑑∗𝑑,W4  ∈ ℝ𝑑∗3𝑑 being the trainable matrix. The formulation

of Eq. (15) prevents 𝑒𝑢
(𝑘)

 from increasing excessively with the 

rise of 𝑘. 

𝑒𝑢 =∑𝛼𝑘𝑒𝑢
(𝑘)

𝐾

𝑘=0

;  𝑒𝑖 =∑𝛼𝑘𝑒𝑖
(𝑘)

𝐾

𝑘=0

(17) 

where, 𝛼𝑘  represents the weight value of the k-th layer

embedding used in the final embedding. To circumvent 

unnecessary complexity, 𝛼𝑘  is set uniformly as 1/𝑘 + 1 ,

generally resulting in robust performance. 

This paper also presents the matrix form of the proposed 

layer-wise propagation rule for embedding propagation in 

TIGCN: 

𝐸(𝑘)=LeakyReLU((ℒ + 𝐼)𝐸(𝑘−1)𝑊1
𝑙 + ℒ𝐸(𝑘−1)

⊙𝐸(𝑘−1)𝑊2
𝑘)

(18) 

where, 𝐸(𝑘) ∈ ℝ(𝑁+𝑀)∗𝑑𝑘 is the representation sets for users

and items obtained after 𝑘 layers of embedding propagation, 

𝐸(0) is set as 𝐸  at the initial message-passing iteration, ℒ
represents the Laplacian matrix for the user-item graph, which 

is formulated as: 

ℒ = 𝐷−
1
2𝐴𝐷−

1
2, A= (

0 𝑅
𝑅𝑇 0

) (19) 

where, 𝑅 ∈ ℝ𝑁+𝑀 is the user-item interaction matrix, and 𝑀
and 𝑁 denote the number of users and items, respectively, 𝐴 is 

the adjacency matrix and 𝐷 is the diagonal degree matrix, each 

entry 𝑅𝑢𝑖 is rating if 𝑢 has interacted with item 𝑖 otherwise 0,

which augments user-item representations by explicitly 

exploiting the feedback. 

2.3 Prediction layer 

The prediction layer in our model combines the aggregation 

and propagation layers to capture dependencies and explore 
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higher-order connectivity. By observing the influence of 

learning results in experiments, we find that representations 

obtained from different layers emphasize messages passed 

over different connections, contributing differently to 

reflecting user preferences. The final vector representations of 

user and item embeddings, 𝑒𝑢  and 𝑒𝑖  respectively, are

obtained through this process. The value of l, representing the 

number of layers, is crucial as it determines the effectiveness 

of extracting embedding vectors while avoiding insufficient 

information extraction. A larger value implies higher space 

and time complexity, while a smaller value indicates the 

opposite. 

The model prediction is defined as the inner product of the 

user and item final representations: 

�̂�𝑢𝑖 = 𝑒𝑢
𝑇𝑒𝑖 (20) 

This ranking score is used to measure the recommendation 

priority of different items in the recommendation system. A 

higher ranking score suggests a stronger recommendation for 

the item to the user, indicating a higher similarity between the 

user and item vectors. The ranking score calculation is 

computationally efficient, making it suitable for large-scale 

recommendation systems. Furthermore, it serves as the basis 

for parameter optimization during model training. 

To optimize the model parameters, we employ the Bayesian 

Personalized Ranking (BPR) loss [21]. The BPR loss aims to 

maximize the observed order of item interactions by users, 

giving higher ranks to items that users have interacted with 

compared to those they haven't. 

ℒ𝐵𝑃𝑅 = ∑ −ln 𝜎 (�̂�𝑢𝑖 − �̂�𝑢𝑗)

(𝑢,𝑖)∈𝑁𝑢
𝐼 ,(𝑢,𝑗)∉𝑁𝑢

𝐼

+ ℷ‖𝐸(0)‖
2

2

(21) 

where, 𝑁𝑢
𝐼  represents the neighborhoods of user u in the user-

item interaction graph. The trainable parameters of our model, 

TIGCN, are limited to the embeddings of the 0-th layer 

denoted as 𝐸(0) , and the 𝐿2  regularization strength is

controlled by ℷ. 

2.4 Space complexity 

In terms of space complexity, our model consists of two 

parts: user and item embedding, and trainable parameters in 

graph fusion. Similar to the embedding-based model 

LightGCN [16], the latent dimensions for each node (n users 

and m items, with the dimension d) need to be stored, resulting 

in a space complexity of (𝑛 +𝑚) × 𝑑 for this part. As for the 

trainable parameters in graph fusion, we have four trainable 

matrices: W1, W2, W3 and W4. Among these, W2, W3 and W4 

are 𝑑 × 𝑑 matrices, while W1 is a 2d×d matrix. Therefore, the 

total space complexity is (𝑛 + 𝑚 + 4𝑑) × 𝑑 , with d 

significantly smaller than (𝑛 + 𝑚) , rendering it negligible. 

Thus, the proposed TIGCN demonstrates reasonable space 

complexity.  

3. EXPERIMENTS

In this section, the experimental setups (Sections 3.1, 3.2, 

and 3.3) are presented, and the corresponding results of the 

proposed TIGCN model are compared to state-of-the-art 

recommendation models, with a particular focus on the 

embedding propagation layer. 

3.1 Datasets 

To ensure the model's unbiasedness, we conducted 

experiments on three publicly accessible real-world datasets: 

Ciao, Epinions, and Filmtrust. These datasets are independent 

of each other and differ in application domain, data size, and 

data sparsity. 

Table 1. Statistics of the experimented datasets 

Datasets Users Items Interaction Sparsity 

Ciao 7375 106797 99746 0.004 

Epinions 22166 296277 919224 0.00013 

Filmtrust 1508 2071 40163 0.0114 

The attributes of these datasets are outlined in Table 1. 

Filmtrust exhibits higher data sparsity. An important 

observation is the impact of sparsity on the model's 

recommendation performance. The dataset details are as 

follows: 

(1) Ciao: An online shopping dataset consisting of 7375

users and 106797 items. Users rate items to express their 

attitudes towards them. 

(2) Epinions: Collected from Epinions.com, this dataset

comprises 22166 users and 296277 items. 

(3) Filmtrust: Collected from filmtrust.com, a platform

where users can rate and comment on movies, this dataset 

contains 1508 users and 2071 items. 

3.2 Baselines 

To assess the performance improvement of the TIGCN 

model, we conducted comparative experiments with current 

advanced recommendation models. The models used for 

comparison are as follows: 

(1) SocialLGN [3]: This model propagates the

representation of each user and item in the user-item 

interaction graph using light graph convolutional layers. 

Simultaneously, the user's representation is propagated in the 

social graph. Finally, it combines the user presentation from 

both graphs to obtain the final user embedding for prediction. 

(2) FST [22]: The Factored Similarity Model with Trust

(FST) incorporates the mutual trust matrix and user similarity 

matrix into the Factored Item Similarity Models (FISM) [23] 

to alleviate sparsity in top-N recommender systems and 

enhance ranking recommendation accuracy. 

(3) FSTID [24]: The Factored User and Item Similarity

Model with Trust and Social Influence based on deep learning 

leverages deep learning techniques to configure the features in 

Matrix Factorization (MF) rather than using random 

initialization. Additionally, it introduces a trust measurement 

model to quantify implicit trust strength. 

3.3 Evaluation protocols 

In this section, the all-ranking protocol and employ four 

evaluation metrics: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑁,  𝑅𝑒𝑐𝑎𝑙𝑙@𝑁  and 

𝑁𝐷𝐶𝐺@𝑁 are adopted. The evaluation metrics are defined as 

follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑁 =
1

|�̄�|
∑

|𝑅𝑢 ∩ 𝐼𝑢|

𝑁
𝑢∈�̄�

(22) 
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𝑅𝑒𝑐𝑎𝑙𝑙@𝑁 =
1

|�̄�|
∑

|𝑅𝑢 ∩ 𝐼𝑢|

|𝐼𝑢|
𝑢∈�̄�

 (23) 

 

𝑁𝐷𝐶𝐺@𝑁 =
1

|�̄�|
∑

𝐷𝐶𝐺@𝑁

𝐼𝐷𝐶𝐺@𝑁
𝑢∈�̄�

 (24) 

 

In the experiments, the recommendation list length N is set 

to 10. 𝑈  represents all users in the test set. 𝑅𝑢 denotes the set 

of recommended items for user u, while 𝐼𝑢 represents the set 

of items that user 𝑢  has interacted with. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑁, 𝑅𝑒𝑐𝑎𝑙𝑙@𝑁  and 𝑁𝐷𝐶𝐺@𝑁  respectively 

measure the precision, recall rate, and 𝑁𝐷𝐶𝐺  (Normalized 

Discounted Cumulative Gain) for the recommended items. 

 

3.4 Performance comparison with state-of-the-arts 

 

In this section, the proposed model is evaluated using three 

real-world datasets and its performance is compared with other 

state-of-the-art recommendation models, including 

SocialLGN, FST, and FSTID. The following observations can 

be made: 

(1) Experimental results on the Ciao, Epinions, and 

Filmtrust datasets, with N=5 and N=10, are presented in Table 

2. Our proposed model, TIGCN, consistently outperforms the 

other recommendation models in terms of accuracy and 

effectiveness. This superiority can be attributed to the 

utilization of graph structures for message propagation, which 

leads to performance improvements. 

(2) TIGCN incorporates implicit social relations (i.e., social 

trust and influences) representation, which enhances both the 

model's representational capacity and its recommendation 

performance. In most cases, TIGCN achieves better 

performance compared to the other recommendation models. 

(3) Comparing TIGCN with FST and FSTID, it is evident 

that GCN-based models (SocialLGN and TIGCN) perform 

well on the experimental datasets. This demonstrates the 

superiority of the GCN method, as shown in Table 2, Figure 

5, and Figure 6. The results clearly indicate that our model 

consistently outperforms the others. For instance, when 

compared to SocialLGN, TIGCN shows improvements of 

2.7% in Recall@5 metric on the original Ciao dataset, 2.87% 

in Recall@10 metric on the original Epinions dataset, and 

1.7% in NDCG@10 metric on the original Filmtrust dataset, 

respectively. These improvements can be attributed to the 

consideration of social relations (i.e., social trust and 

influences) and the effective utilization of rating data in the 

user-item interaction graph. The propagation mechanism in 

the social graph effectively mitigates the data sparsity 

problem. Moreover, TIGCN achieves improvements of 2.08% 

and 2.65% in Precision@5 and Precision@10 metrics, 

respectively, on the Ciao dataset compared to SocialLGN. 

Similarly, TIGCN outperforms SocialLGN on the Epinions 

dataset in terms of NDCG@5 and NDCG@10 metrics, 

showing improvements of 2.28% and 2.82% respectively. 

These results demonstrate TIGCN's capability in addressing 

data sparsity and the cold-start problem in social 

recommendation. 

 

Table 2. Performance analysis on Precision@N, Recall@N and NDCG@N 

 
Method FST FSTID SocialLGN TIGCN Improve 

Ciao 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@5 0.0274 0.0292 0.0337 0.0344 0.0208 

𝑅𝑒𝑐𝑎𝑙𝑙@5 0.0242 0.0248 0.0259 0.0266 0.0270 

𝑁𝐷𝐶𝐺@5 0.0272 0.0276 0.0409 0.0413 0.0098 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@10 0.0236 0.0236 0.0264 0.0271 0.0265 

𝑅𝑒𝑐𝑎𝑙𝑙@10 0.0393 0.0393 0.0403 0.0412 0.0223 

𝑁𝐷𝐶𝐺@10 0.0359 0.0359 0.0421 0.0429 0.0190 

Epinions 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@5 0.0124 0.01243 0.024 0.0245 0.0208 

𝑅𝑒𝑐𝑎𝑙𝑙@5 0.0163 0.0164 0.0202 0.0207 0.0248 

𝑁𝐷𝐶𝐺@5 0.0145 0.0145 0.0263 0.0269 0.0228 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@10 0.0105 0.0105 0.021 0.0215 0.0238 

𝑅𝑒𝑐𝑎𝑙𝑙@10 0.025 0.0251 0.0348 0.0358 0.0287 

𝑁𝐷𝐶𝐺@10 0.0178 0.0178 0.0319 0.0328 0.0282 

Filmtrust 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@5 0.3613 0.3624 0.4067 0.4122 0.0135 

𝑅𝑒𝑐𝑎𝑙𝑙@5 0.3942 0.403 0.5041 0.5096 0.0109 

𝑁𝐷𝐶𝐺@5 0.359 0.3688 0.3946 0.4013 0.0170 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@10 0.291 0.2952 0.3349 0.3381 0.0096 

𝑅𝑒𝑐𝑎𝑙𝑙@10 0.5462 0.5526 0.6108 0.6223 0.0188 

𝑁𝐷𝐶𝐺@10 0.4512 0.5018 0.5414 0.5492 0.0144 

 

   
(a) (b) (c) 

 

Figure 5. Performance analysis on NDCG@5, Recall@5 and Precision@5 
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(a) (b) (c) 

Figure 6. Performance analysis on NDCG@10, Recall@10 and Precision@10 

4. CONCLUSION

In this work, a novel Graph Convolution Network 

framework with implicit Trust and Influence (TIGCN) is 

developed, augmenting user-item representations by 

exploiting implicit social relations of users and items in the 

predictive model. The most influential users are determined by 

the Structural Holes (SH) method. Specifically, user-user trust 

graphs and user-user influence graphs are constructed based 

on user-user bipartite social network graphs and embeddings 

to exploit inter-user implicit social relations, user trust 

features, and influence features, which are obtained from the 

user-user bipartite social network graph. These features serve 

as the input for the user-user trust graph and user-user 

influence graph, respectively. This module collaboratively 

explores the propagation process of user interest and social 

relations, enhancing the robustness of recommendation 

systems. 

A series of experiments are conducted on real-world 

datasets: Ciao, Epinions, and FilmTrust. Experimental results 

demonstrate that TIGCN significantly improves performance 

over various state-of-the-art baselines, such as FST, FSTID, 

and SocialLGN. The experiments reveal that incorporating 

implicit social relations (i.e., social trust and influences) into a 

GCN-based approach improves the recommended 

Precision@5 by a maximum of 2.08%, Recall@5 by a 

maximum of 2.7%, NDCG@5 by a maximum of 2.28%, 

Precision@10 by a maximum of 2.65%, Recall@10 by a 

maximum of 2.87%, and NDCG@10 by a maximum of 

2.82%. 

One limitation of TIGCN is its reliance on the proposed 

graph convolution network model LightGCN [16]. Although 

the basic rationale behind the model is thoroughly elaborated 

in the literature, integrating implicit trust and influence 

relations in a complementary manner could further enhance 

the results. Another limitation stems from determining the 

most influential users with the traditional SH method, which 

only measures the influence relationship between a node and 

its nearest neighbor, without considering relationships 

between the node and its two-hop neighbors. 

Despite the impressive results of TIGCN, constructing user 

trust relationship view, user influence relations view, and item 

view are three independent processes, increasing the difficulty 

of implementing the model. In future research, suitable feature 

extraction approaches for multimodal data, including text, 

audio, and video information, could be explored to enrich the 

representation of users and items. Additionally, the scalability 

of TIGCN for larger datasets and more complex graphs may 

be considered. The joint optimization strategy of self-

supervised techniques and contrastive learning could be 

investigated for application in more recommendation-related 

scenarios, such as sequential recommendation. 
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