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Conventional forest fire monitoring methods, such as ranger patrol and satellite remote 

sensing, possess certain limitations. Unmanned Aerial Vehicles (UAVs) have been 

identified as valuable tools for firefighting due to their high mobility, rapid deployment, and 

low cost, enabling quick identification of fire sources during the initial stages. To maximize 

the potential of UAVs in forest fire monitoring, this study investigates a novel approach for 

analyzing infrared images captured by UAVs for forest fire monitoring purposes. Initially, 

a diagram illustrating the hardware utilized in a typical forest fire monitoring system is 

provided. Subsequently, based on static features (such as color and texture) and dynamic 

features (such as size, location, and shape) of the infrared images captured by UAVs, a new 

algorithm for detecting suspected fire areas is proposed and employed to make final 

judgments on potential forest fire regions. Finally, a forest fire identification model is 

developed based on an improved Probability Neural Network (PNN), and its effectiveness 

is verified through experimentation. The research presented in this paper could offer 

valuable insights for forest fire monitoring. 
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1. INTRODUCTION

The frequency of forest fires has increased in recent years 

due to the impacts of intensified global climate change and 

human activities, resulting in significant harm and loss to both 

human society and the ecological environment [1, 2]. Statistics 

indicate that millions of hectares of forests are destroyed by 

fire annually worldwide [3], leading to considerable loss of 

biodiversity [4] and increased carbon emissions [5]. Forest 

fires not only damage forest resources [6] and adversely affect 

the atmospheric environment [7], soil-water conservation [8], 

biodiversity [9], and quality of human life [10], but also 

contribute to the long-term failure of forest ecosystems with 

far-reaching impacts on soil structure and water resources [11]. 

As a result, strengthening forest fire monitoring and 

prevention is of great importance. 

To prevent forest fires and minimize the ecological and 

environmental damages they cause, governments and research 

institutions worldwide have invested significant resources into 

researching forest fire monitoring methods [12]. Conventional 

monitoring methods, such as ranger patrol and satellite remote 

sensing, have their respective disadvantages [13]. Ranger 

patrol is time and labor-intensive, limited by natural conditions 

like topography and climate, and struggles to achieve rapid 

and accurate fire source discovery [14]. Moreover, patrolling 

forests in adverse weather or harsh terrain conditions poses 

high safety risks [15]. Although satellite remote sensing can 

cover wide areas and provide real-time feedback, its limited 

resolution hampers accurate fire source positioning during the 

early stages of a fire [16]. Additionally, factors such as cloud 

cover can affect the real-time fire source monitoring 

capabilities of satellite remote sensing [17]. Consequently, 

researchers face the pressing task of developing more efficient 

and accurate forest fire monitoring methods [18, 19]. 

Rapid advancements in Unmanned Aerial Vehicle (UAV) 

technology in recent decades have offered a new solution for 

forest fire monitoring, boasting numerous advantages such as 

high mobility, rapid deployment, and low cost [20]. UAVs can 

quickly locate fire sources in the initial stages and provide 

powerful support for firefighting efforts [21]. Infrared images 

effectively detect temperature distribution in target areas, 

accurately identifying fire sources and proving useful for fire 

source detection. The combination of UAVs and infrared 

imaging can significantly improve the accuracy and real-time 

performance of forest fire monitoring. 

This study aims to investigate an analysis method for 

infrared images captured by UAVs for forest fire monitoring. 

In the second section, a diagram illustrating the hardware 

utilized in a typical forest fire monitoring system is provided. 

Based on the static features (such as color and texture) and 

dynamic features (such as size, location, and shape) of the 

infrared images captured by UAVs, a new algorithm for 

detecting suspected fire areas is proposed and applied to make 

final judgments on potential forest fire regions. In the third 

section, a forest fire identification model is developed based 

on an improved PNN. Finally, the effectiveness of the 

proposed method is verified through experimentation. The 

research findings obtained in this study could serve as a 

reference for future studies on forest fire monitoring. 
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2. FEATURE EXTRACTION OF SUSPECTED FOREST 

FIRE AREA 

 

Figure 1 gives a diagram showing the hardware structure of 

a typical forest fire monitoring system. The fire detection 

algorithms used in existing detection systems are mostly 

multi-feature fusion algorithms, but as the number of extracted 

feature types of suspected fire area gets higher, the effect of 

such multi-feature fusion algorithms gets worse. Considering 

the complexity of feature extraction of suspected forest fire 

area, this study proposed a new algorithm for detecting 

suspected fire area based on color and texture features of 

infrared images taken by UAV and applied it to the final 

judgement of suspected fire area. 

 

 
 

Figure 1. Hardware structure of forest fire monitoring system 

 

The YCbCr color space separates the brightness information 

(Y channel) of an image from its chromaticity information (Cb 

and Cr channels), which means that Cb and Cr channels only 

represent color information and are irrelevant to brightness. In 

fire detection, such separation is helpful to eliminating the 

influence of light change on color feature extraction and 

improving the stability and accuracy of the detection algorithm. 

In the meantime, the color range of flames usually 

concentrates in warm tone areas such as red, orange, and 

yellow. In the YCbCr color space, these colors are represented 

as specific combinations of Cb and Cr channels, so through 

the feature distribution analysis of Cb and Cr channels, fire 

areas could be effectively identified, and this is the reason this 

study took the distribution of Cb and Cr channels in the YCbCr 

color space as the color features of suspected forest fire area.  

Assuming: Z represents the calculated color eigenvector of 

a suspected forest fire area, zL1 represents the mean value of 

Cb component in the YCbCr color space, zA1 represents the 

corresponding standard deviation, zL2 represents the mean 

value of Cr component, zA2 represents the corresponding 

standard deviation, then the eigenvector of the suspected forest 

fire area is given by the following formula: 

 

 1 2 1 2L L A AZ z z z z=  (1) 

 

This study used energy, entropy, contrast and correlation to 

describe the texture information of suspected fire area, since 

they are metrics that can measure texture properties from 

different angles. Energy indicates texture uniformity, entropy 

indicates texture complexity, contrast indicates the 

distribution differences of grayscale in the texture, and 

correlation indicates the direction of texture. Together these 

four features depict the full properties of texture, which is 

conductive to improving the accuracy of fire detection. The 

texture features of flame areas are significantly different from 

those of non-flame areas, so the four indicators can effectively 

capture these differences and distinguish between flame and 

non-flame areas. 

Assuming: NL represents energy, SH represents entropy, 

DBD represents contrast, XGX represents correlation. By 

normalizing the gray-level co-occurrence matrix of infrared 

images of forest fire taken by UAV, a matrix O with u rows 

and k columns could be attained. Assuming: ωb and ωl 

represent the mean values in directions u and k, δb and δl 

represent the standard deviations in directions u and k, then the 

calculation formulas of NL, SH, DBD and XGX are: 
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Assuming: ZHYWL represents the texture eigenvector of 

suspected forest fire area attained from the calculation of the 

gray-level co-occurrence matrix; the mean values and standard 

deviations of NL, SH, DBD and XGX are represented by zL3, 

zL4, zL5, zL6 and zA3, zA4, zA5, zA6, then ZHYWL can be written as: 
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By combining the features of the YCbCr color space and the 

suspected forest fire area, a single sample feature Z of the 

infrared image can be expressed as: 

 

 TVnVe HYWLZ Z Z=  (7) 

 

In actual applications, moving objects in infrared images are 

sometimes mistakenly reported. Via dynamic feature 

extraction, changes in the location and shape of suspected fire 

area can be analyzed so as to distinguish them from other 

moving objects and eliminate the interference. By analyzing 

multiple continuously-shot infrared images, changes in the 

suspected fire area in the time dimension could be captured, 

which is conduce to distinguishing between real fires and 

accidental flame phenomena, thereby reducing misjudgments. 

Dynamic features such as the size, location and shape of 

suspected fire area can reflect the trend of fire development. In 

this study, the area change rate was used to represent the 

velocity of fire spread, and the displacement of mass center 

was adopted to represent the direction of fire spread, in this 

way, combining with the static and dynamic features such as 

color and texture, the suspected fire area could be described 

more comprehensively, which can further improve the 
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accuracy and reliability of fire detection.  

Assuming: U1(z,t) and U2(z,t) represent two consecutive 

infrared images of a suspected forest fire area; SU1 and SU2 

respectively represent the area of U1(z,t) and U2(z,t), then the 

formula for calculating the area change rate of forest fire is: 
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If the infrared images are collected at very short time 

intervals, then the area growth and stability features should be 

fully considered. This study adopted the idea of average 

filtering to improve the above calculation method. Assuming: 

S represents the area of forest fire, C represents the area change 

rate, 𝐶̅ represents the average area change rate, then there are: 

 

u j u

uj

S S
C

j

+ −
=  (9) 

 

1

1 b

uj uj

u

C C
b =

=   (10) 

 

In terms of the determination of mass center displacement, 

the suspected fire area was subjected to binarization 

processing. A threshold was set to divide pixel values within 

the suspected fire area into two categories: flame pixels (value 

is 1) and non-flame pixels (value is 0). The mass center was 

the central coordinate of the fire area. Assuming U1(z,t) and 

U2(z,t) represent two consecutive infrared images of suspected 

forest fire area, (Z1, T1) and (Z2, T2) respectively represent the 

center of the suspected fire area in the two images, the size was 

both L*B, then the center of the suspected fire area (Z,T) can 

be calculated by the following formula: 
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Then the mass center displacement of the suspected fire area 

in U1(z,t) and U2(z,t) can be calculated as follows: 

 

( ) ( )
2 2

2 1 2 1JJF Z Z T T= − + −  (12) 

 

The edges of a fire usually appear as irregular and fast-

changing contours. By analyzing the jittering edges, the 

dynamic features of flame edges can be captured to help 

identify the real fire area. Interferents such as flash light and 

reflection exhibit static features similar to those of a fire area, 

but their edge jittering features are quite different, so analyzing 

the significance of changes in the number of sharp angles can 

effectively reduce false positives. Assuming: OJJ represents 

the number of sharp angle changes in the suspected fire area, 

𝑂𝐽𝐽̅̅ ̅̅  represents the average number of sharp angle changes, V 

represents the number of sharp angles, then there are: 
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The analysis of jittering edges is not affected by 

illumination or occlusion, thus it has a good adaptability, and 

this makes it possible to maintain a high detection performance 

in various environments by making judgments based on the 

significance of changes in the number of sharp angles. 

 

 

3. FOREST FIRE IDENTIFICATION MODEL BASED 

ON IMPROVED PNN 

 

Figure 2 plots the flow of the overall forest fire 

identification scheme. Compared with other neural network 

models, PNN has a faster training speed. The main training 

process of PNN is to calculate the probability density function, 

and no iterative optimization is required, thus the model 

training can be completed within a short time. PNN model uses 

kernel function to realize nonlinear classification, thus it can 

quickly solve complex classification problems. In terms of 

forest fire identification tasks, since fire and non-fire areas 

exhibit nonlinear distribution in the feature space, PNN has a 

good classification performance. Figure 3 shows the structure 

of PNN model. 

 

 
 

Figure 2. Flow chart of the overall forest fire identification 

scheme 

 

 
 

Figure 3. Structure of PNN 
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Assuming: X=(x1,x2, x3,...,xn) represents the dynamic 

features of suspected forest fire area of a single sample input 

into the model, Z represents the vector of b×m, Zuk represents 

the dynamic features of suspected forest fire area of the k-th 

input sample in the u-th category, δ represents the smoothing 

factor, then the output of the model mode layer Puk can be 

calculated by the following formula: 
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The size of Puk indicates the probability of each sample 

belonging to different categories of forest fire identification. 

Further, the weighted sum of Puk was calculated in the network 

summation layer of the model. Assuming Bu represents the 

number of the u-th type of samples, μuk represents the weight 

of each type of samples, then there is: 
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Assuming: J represents the sample tag type, then the final 

classification decision of forest fire could be given based on 

the Bayes decision rule of minimum risk, and the calculation 

formula of the model output layer is: 
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The Expectation Conditional Maximization (ECM) 

algorithm is an iterative algorithm used for parameter 

optimization of hidden variable models. The ECM algorithm 

guarantees the convergence of the objective function, that is, 

as the number of iterations increases, the value of the objective 

function tends to be stable, and this enables the ECM algorithm 

to have a better stability when dealing with the parameter 

optimization problem of PNN models.  

Assuming: Z represents the data of dynamic features of 

suspected forest fire area of the input sample, A represents the 

data of hidden variable, ϕ=(δ1,δ2,...,δg) represents the model 

parameter vector to be optimized, O(Z|ϕ) represents the 

probability distribution of Z, O(Z, A|ϕ) represents the joint 

probability distribution of Z and A, then the specific 

implementation steps of the ECM algorithm are: 

(1) Set appropriate initial values for parameters in the model, 

including the initial probability distribution of hidden variable 

and the probability distribution of observed variable, etc. 

(2) Calculate the posterior probability distribution of hidden 

variable, and then calculate the expectation of logarithmic 

likelihood function of complete data according to the posterior 

probability distribution. Assuming ϕy represents the estimated 

value of parameter ϕ in the y-th iteration, 1gO(Z,A|ϕ) 

represents the logarithmic likelihood function of complete data, 

then define function W in step E, that is W(ϕ,ϕy)=AMQ(ϕ,ϕy). 

(3) Then, in step CM, decompose the maximization step into 

multiple sub-steps. In each sub-step, only optimize one 

parameter or one group of related parameters, while other 

parameters remain unchanged. Parameters can be updated by 

solving the maximization sub-problem. Maximize Q(ϕ,ϕy) and 

find ϕy+1=argmaxQ(ϕ,ϕy). Parameters are divided and 

represented as ϕ=(ϕ1,ϕ2,...,ϕy), then under constraints, the 

conditional maximization calculation is performed for m times, 

and finally the optimal parameters can be attained. 

(4) Use the value of ϕy+1 to update ϕy, repeat the calculations 

in above two steps, and check whether the objective function 

(such as logarithmic likelihood function) converges; when 

||ϕy+1-ϕy|| satisfies the condition, the iteration can be terminated. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

 

 

 
 

Figure 4. Proportion of Cr component under flame, flame-

like substance, and no-fire conditions 

 

In the YCbCr color space, the Cb channel represents the 

difference between the blue component and the brightness, and 

the Cr channel represents the difference between the red 

component and the brightness. Generally, the proportion of Cr 
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component in the flame is higher because there is more red 

component in the flame; while for flame-like substance and 

no-fire conditions, the proportion of Cr component in lower. 

In the meantime, the proportion of Cb component in the flame 

is lower because there is less blue component in the flame. By 

analyzing the distribution of Cb and Cr channels, the flame, 

flame-like substance and no-fire conditions could be 

distinguished effectively. Figure 4 gives the proportion of Cr 

component under flame, flame-like substance and no-fire 

conditions, as can be known from the figure, flame colors 

usually have high sharpness, and the Cr channel of the YCbCr 

color space can well describe the red component in the flame, 

which helps to distinguish flame from other substances. 

 

 
 

Figure 5. The change of area change rate of suspected forest fire area with frame number 

 

 
 

Figure 6. The change of mass center displacement of suspected forest fire area with frame number 

 

Figures 5 and 6 respectively show the variation of area 

change rate and mass center displacement of suspected forest 

fire area with the frame number, based on the two figures, by 

observing and analyzing the data, it can be known that the 

variation of area change rate and mass center displacement of 

suspected forest fire area with the frame number is greater than 

that of light bulb, flashlight, people, and soldering iron, and 

this phenomenon indicates that the area change rate of 

suspected forest fire area is an effective dynamic feature that 

can be used to distinguish fire from other substances. Applying 

this dynamic feature to fire identification can improve the 

accuracy of fire detection in real-time. The model can analyze 

video data captured by cameras in real time, so that fire 

disasters can be quickly identified and alarms could be 

sounded at once, then fire fighting and preventive measures 

could be taken in a timely manner. The experimental results 

suggest that it is feasible to extract dynamic features from the 

area change rate and mass center displacement of suspected 

forest fire area and apply them to fire identification. This 

method can improve the accuracy and real-time performance 

of fire detection, and help to deal with fire risks more 

effectively. 

Data in Table 1 give the change rate of image shape 

parameter of nine samples under three conditions of 

smoldering fire, flashlight and luminous incandescent light 

bulb. In terms of smoldering fire, the average change rate of 
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image shape parameter of the nine samples is 0.2846, which is 

a relatively high value, and this indicates that there are great 

changes in the shape parameter of the image feature of 

smoldering fire, and this is related to the heat generated by the 

fire and the spread of the fire. In terms of flashlight, the 

average change rate of image shape parameter of the nine 

samples is 0.0639, which is a relatively low value, indicating 

that there are significant differences in shape parameter 

between flashlight and smoldering fire, and this is conductive 

to distinguishing between fire and non-fire situations. In terms 

of luminous incandescent light bulb, the average change rate 

of image shape parameter of the nine samples is 0.0384, which 

is the lowest, indicating that the change of shape parameter of 

light bulb is relatively small, which helps to further distinguish 

fire and non-fire situations. Therefore, by analyzing the 

change rate of image shape parameter of smoldering fire and 

interferents, it can be found that the change of shape parameter 

of smoldering fire is greater, while for flashlight and light bulb, 

the change is not that big, indicating that the change rate of 

shape parameter can be taken as an effective feature to assist 

the identification of fire and non-fire situations under different 

circumstances, in this way, the accuracy and robustness of the 

model can be improved further. 

 

Table 1. Change rate of image shape parameter of 

smoldering forest fire and interferents 

 
Sample 

No. 

Smoldering 

fire  

Flashlight Luminous incandescent 

light bulb 

1 0.0738 0.0862 0.0284 

2 0.1383 0.0973 0.0473 

3 0.1836 0.1846 0.0183 

4 0.2947 0.0183 0.0783 

5 0.1836 0.0294 0.0183 

6 0.2463 0.1946 0.0183 

7 0.1823 0.0384 0.0183 

8 0.2946 0.0183 0.0384 

9 0.3862 0.0974 0.0435 

Mean 0.2846 0.0639 0.0384 

 

 
 

Figure 7. Test effect of improved model 

 

Figure 7 shows the test effect of the improved model. In this 

study, the infrared images taken by forest fire UAV were 

tested, and the analysis of test results and test errors shows that, 

the forest fire identification model built based on improved 

PNN has high accuracy and robustness in fire detection. The 

test errors are low, indicating that the proposed model had 

extracted dynamic and static features that are helpful for fire 

identification based on the characteristics of infrared images, 

the distinguishing ability of the model had been enhanced, 

false alarms and missed alarms had been effectively reduced, 

and the accuracy of fire identification had been improved.  

 

 
 

Figure 8. ROC curves of different models 

 

Figure 8 shows the change of FPR (false positive rate) of 

different models with the TPR (true positive rate), it can seen 

that the proposed model had a high TPR and a low FPR in 

most cases, suggesting that the model can effectively identify 

fire and reduce false positives. Other models (Naive Bayes, 

NIR+HMM, CNN, NIR+SVM, and PNN) showed a high FPR 

in some cases, especially in those with a low TPR, indicating 

that when attempts are made to improve the fire detection 

accuracy of these models, a high rate of false positives would 

show up, while the proposed model could maintain a low FPR 

over the entire TPR range, indicating better balance and 

robustness with it. Thus, the proposed model performed well 

in the trend analysis of FPR with TPR, and it could effectively 

reduce the rate of false positives while maintaining a high fire 

identification accuracy. 

 

Table 2. Test performance of different models 

 

Model 
Correct 

rate 

Error 

rate 

False positive 

rate 

Naive Bayes 97.84% 1.54% 0.86% 

NIR+HMM 98.72% 1.65% 1.76% 

CNN 99.74% 2.98% 1.56% 

NIR+SVM 96.93% 1.76% 2.89% 

PNN 96.91% 1.26% 2.58% 

The proposed model 98.73% 1.12% 1.65% 

 

From the Table 2, the test performance of different models 

could be observed, including correct rate, error rate, and false 

positive rate, and here is an analysis of the performance of each 

model. In terms of the Naive Bayes model, although its correct 

rate reaches 97.84%, its error rate and false positive rate are 

1.54% and 0.86%, respectively, so its performance is just 

average among the various reference models. In terms of the 

NIR+HMM model, its correct rate is 98.72%, suggesting a high 

level, but its error rate and false positive rate are 1.65% and 

1.76%, both are high. In terms of the CNN model, its 
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performance is the best among all models, the correct rate 

reaches as high as 99.74%, and its error rate and false positive 

rate are 2.98% and 1.56%, respectively, the overall 

performance is good, but the error rate is relatively high. In 

terms of the NIR+SVM model, its correct rate is 96.93%, a 

relatively low value, and its error rate and false positive rate 

are 1.76% and 2.89%, respectively, its performance is the 

worst among all models. In terms of the PNN model, its correct 

rate is 96.91%, a relatively low value, its error rate is 1.26%, 

also relatively low, and its false positive rate is 2.58%, which 

is relatively high. As for the proposed model, its correct rate is 

98.73%, a relatively high value, the error rate is 1.12%, which 

is the lowest among all model, and its false positive rate is 

1.65%, a relatively low value. If correct rate, error rate and 

false positive rate are considered comprehensively, the 

performance of the proposed model is the best among all 

references models, its correct rate is high, error rate is low, and 

false positive rate is relatively low, indicating that the model 

exhibited high accuracy and robustness in the fire 

identification task. Compared with other models, the proposed 

model could provide more effective support for early warning 

and response of forest fire. 
 

Table 3. Test sample input vectors and test results 
 

Sample 

No. 

Detected temperature 

of the target 

Area 

change rate 

Shape 

change rate 

Is there a smoldering 

fire or not? 
Output value 

1 201.5 0.1856 0.3829 Yes 0.973635872 

2 235.1 0.0964 0.0738 Yes 0.782734627 

3 241.6 0.2758 0.1874 Yes 0.972253479 

4 321.7 0.1183 0.1836 Yes 0.975237492 

5 214.6 0.0863 0.2957 Yes 0.982646848 

6 113.6 0.0057 0.0973 No 0.002857394 

7 132.6 0.0012 0.0381 No 0.003976834 

8 57.8 0.0036 0.1836 No 0.000176488 

9 101.4 0.0042 0.0973 No 0.002947588 

10 113.9 0.0124 0.0146 No 0.002874968 

11 210.4 0.0482 0.0682 No 0.004743834 

12 214.6 0.0592 0.0246 No 0.392746484 

13 219.4 0.1948 0.0183 No 0.038194694 

14 211.5 0.0294 0.0384 No 0.098326484 

15 214.7 0.0873 0.0184 No 0.019463484 

 

The Table 3 lists the input vectors (detected temperature, 

area change rate, shape change rate, and whether there is a 

smoldering fire) and corresponding output values of 15 test 

samples. “Yes” means there is a fire in Samples 1-5, their 

output values are mostly close to 1 (between 0.78-0.98), 

indicating that the model had successfully identified these fire 

samples. As for Samples 6-15, “No” means there isn’t a fire in 

these samples, and their output values are generally low 

(between 0.0002-0.39), indicating that the model had 

successfully identified these non-fire samples. As a result, the 

proposed model performed well on all test samples, it had 

accurately identified fire and non-fire samples based on the 

input vectors (detected temperature, area change rate, shape 

change rate, and whether there is a smoldering fire), which 

further verified that the model’s effectiveness and 

practicability in the forest fire identification task. 
 

 

5. CONCLUSION 

 

This study explored a new method for analyzing infrared 

images taken by UAV for forest fire monitoring. At first, the 

hardware structure of a typical forest fire monitoring system 

was plotted; then, based on the static features (color and 

texture) and dynamic features (size, location, and shape) of the 

infrared images, a new algorithm for detecting suspected fire 

area was proposed and applied to make final judgement on 

suspected forest fire area; after that, a forest fire identification 

model was built based on an improved PNN. Through 

experimental verification, the following conclusions could be 

drawn: 

1. Through data observation and analysis, it is found that the 

change of dynamic features such as the area change rate of 

suspected forest fire area with the frame number is greater than 

that of light bulb, flashlight, people, and soldering iron, and 

this proves that such dynamic features can be used to 

distinguish fire from other substances. 

2. It is feasible to apply dynamic and static features of 

suspected forest fire area (such as the area change rate) to fire 

identification, and this method can improve the accuracy and 

real-time performance of fire detection and to cope with fire 

risks more effectively. 

3. Compared with other models, the proposed model 

provides more effective support for the early warning and 

response of forest fire. Combining with the proposed model, 

the video data captured by camera can be analyzed in real time, 

so that the fire could be identified immediately and alarms 

could be sounded at once. 

 

 

ACKNOWLEDGMENT 

 

This study was supported by the Project of Science and 

Technology of Shenzhen Polytechnic (Grand No.: 

6021310025K0). 

 

 

REFERENCES  

 

[1] Chugunkova, A.V., Pyzhev, A.I. (2020). Impacts of 

global climate change on duration of logging season in 

Siberian boreal forests. Forests, 11(7): 756. 

https://doi.org/10.3390/f11070756 

[2] Yair, Y. (2018). Lightning hazards to human societies in 

a changing climate. Environmental Research Letters, 

13(12): 123002. https://doi.org/10.1088/1748-

9326/aaea86 

1225



 

[3] Nesha, M.K., Herold, M., De Sy, V., Duchelle, A.E., 

Martius, C., Branthomme, A., Pekkarinen, A. (2021). An 

assessment of data sources, data quality and changes in 

national forest monitoring capacities in the Global Forest 

Resources Assessment 2005–2020. Environmental 

Research Letters, 16(5): 054029. 

https://doi.org/10.1088/1748-9326/abd81b 

[4] Gelles, R.V., Davis, T.S., Stevens-Rumann, C.S. (2022). 

Wildfire and forest thinning shift floral resources and 

nesting substrates to impact native bee biodiversity in 

ponderosa pine forests of the Colorado Front Range. 

Forest Ecology and Management, 510: 120087. 

https://doi.org/10.1016/j.foreco.2022.120087 

[5] Romanov, A.A., Tamarovskaya, A.N., Gloor, E., 

Brienen, R., Gusev, B.A., Leonenko, E.V., Krikunov, 

E.E. (2022). Reassessment of carbon emissions from 

fires and a new estimate of net carbon uptake in Russian 

forests in 2001–2021. Science of The Total Environment, 

846: 157322. 

https://doi.org/10.1016/j.scitotenv.2022.157322 

[6] Stevens, N., Bond, W., Feurdean, A., Lehmann, C.E. 

(2022). Grassy ecosystems in the anthropocene. Annual 

Review of Environment and Resources, 47: 261-289. 

https://doi.org/10.1146/annurev-environ-112420-

015211 

[7] Lapere, R., Mailler, S., Menut, L. (2021). The 2017 

mega-fires in central chile: Impacts on regional 

atmospheric composition and meteorology assessed from 

satellite data and chemistry-transport modeling. 

Atmosphere, 12(3): 344. 

https://doi.org/10.3390/atmos12030344 

[8] Yu, M., Liang, S., Dai, Z., Li, Y., Luo, Y., Tang, C., Xu, 

J. (2021). Plant material and its biochar differ in their 

effects on nitrogen mineralization and nitrification in a 

subtropical forest soil. Science of the Total Environment, 

763: 143048. 

https://doi.org/10.1016/j.scitotenv.2020.143048 

[9] Orumaa, A., Agan, A., Anslan, S., Drenkhan, T., 

Drenkhan, R., Kauer, K., Metslaid, M. (2022). Long-

term effects of forest fires on fungal community and soil 

properties along a hemiboreal Scots pine forest fire 

chronosequence. Science of The Total Environment, 851: 

158173. https://doi.org/10.1016/j.scitotenv.2022.158173 

[10] Kolanek, A., Szymanowski, M., Raczyk, A. (2021). 

Human activity affects forest fires: The impact of 

anthropogenic factors on the density of forest fires in 

Poland. Forests, 12(6): 728. 

https://doi.org/10.3390/f12060728 

[11] James, J.A., Kern, C.C., & Miesel, J.R. (2018). Legacy 

effects of prescribed fire season and frequency on soil 

properties in a Pinus resinosa forest in northern 

Minnesota. Forest Ecology and Management, 415-416: 

47-57. https://doi.org/10.1016/j.foreco.2018.01.021 

[12] Tlig, M., Bouchouicha, M., Sayadi, M., Moreau, E. 

(2022). Infrared-visible images’ fusion techniques for 

forest fire monitoring. In 2022 6th International 

Conference on Advanced Technologies for Signal and 

Image Processing (ATSIP), Sfax, Tunisia, pp. 1-6. 

https://doi.org/10.1109/ATSIP55956.2022.9805812 

[13] Velizarova, E., Nedkov, R., Avetisyan, D., Radeva, K., 

Stoyanov, A., Georgiev, N., Gigova, I. (2019). 

Application of remote sensing techniques for monitoring 

of the climatic parameters in forest fire vulnerable 

regions in Bulgaria. In Seventh International Conference 

on Remote Sensing and Geoinformation of the 

Environment (RSCy2019), 11174, 451-462. 

https://doi.org/10.1117/12.2533656 

[14] Abdusalomov, A.B., Islam, B.M.S., Nasimov, R., 

Mukhiddinov, M., Whangbo, T. K. (2023). An improved 

forest fire detection method based on the detectron2 

model and a deep learning approach. Sensors, 23(3): 

1512. https://doi.org/10.3390/s23031512 

[15] Costa, D., Sutter, C., Shepherd, A., Jarvie, H., Wilson, H., 

Elliott, J., Macrae, M. (2022). Impact of climate change 

on catchment nutrient dynamics: insights from around 

the world. Environmental Reviews. 31(1): 4-25. 

https://doi.org/10.1139/er-2021-0109 

[16] Filizzola, C., Corrado, R., Marchese, F., Mazzeo, G., 

Paciello, R., Pergola, N., Tramutoli, V. (2016). RST-

FIRES, an exportable algorithm for early-fire detection 

and monitoring: Description, implementation, and field 

validation in the case of the MSG-SEVIRI sensor. 

Remote Sensing of Environment, 186: 196-216. 

https://doi.org/10.1016/j.rse.2016.08.008 

[17] Marcos, B., Gonçalves, J., Alcaraz-Segura, D., Cunha, 

M., Honrado, J.P. (2023). Assessing the resilience of 

ecosystem functioning to wildfires using satellite-

derived metrics of post-fire trajectories. Remote Sensing 

of Environment, 286: 113441. 

https://doi.org/10.1016/j.rse.2022.113441 

[18] Bouguettaya, A., Zarzour, H., Taberkit, A.M., Kechida, 

A. (2022). A review on early wildfire detection from 

unmanned aerial vehicles using deep learning-based 

computer vision algorithms. Signal Processing, 190: 

108309. https://doi.org/10.1016/j.sigpro.2021.108309 

[19] Liu, W., Yang, Y., Hao, J. (2022, May). Design and 

research of a new energy-saving UAV for forest fire 

detection. In 2022 IEEE 2nd International Conference on 

Electronic Technology, Communication and Information 

(ICETCI), Changchun, China, pp. 1303-1316. 

https://doi.org/10.1109/ICETCI55101.2022.9832311 

[20] Nihei, K., Kai, N., Maruyama, Y., Yamashita, T., 

Kanetomo, D., Kitahara, T., Segah, H. (2022). Forest 

Fire Surveillance using Live Video Streaming from UAV 

via Multiple LTE Networks. In 2022 IEEE 19th Annual 

Consumer Communications & Networking Conference 

(CCNC), Las Vegas, NV, USA, pp. 465-468. 

https://doi.org/10.1109/CCNC49033.2022.9700621 

[21] Yandouzi, M., Grari, M., Berrahal, M., Idrissi, I., 

Moussaoui, O., Azizi, M., Elmiad, A.K. (2023). 

Investigation of combining deep learning object 

recognition with drones for forest fire detection and 

monitoring. International Journal of Advanced Computer 

Science and Applications, 14(3): 377-384. 

  

1226




