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Delayed diagnosis of numerous diseases often results in postponed treatment, adversely 

affecting patient outcomes. By analyzing biological signals and patient photographs, critical 

information about an individual's health or the severity of a medical condition can be 

obtained for various diseases. Signals from Electroencephalography (EEG), 

Electrocardiography (ECG), and Electrooculography (EOG) can be used to predict and 

diagnose disorders related to the brain, heart, eyes, muscles, and nervous system. 

Additionally, biomedical images acquired through X-ray, ultrasound, and magnetic 

resonance imaging can be utilized for disease diagnosis and detection with the help of image 

processing techniques, artificial intelligence, and deep learning methods. In this study, we 

propose a novel approach that combines the Contrast Limited Adaptive Histogram 

Equalization (CLAHE) algorithm and Multi-Objective Cuckoo Search (MOCS) with 

Convolutional neural networks (CNNs) to achieve highly accurate disease classification 

using chest X-ray images. Our method begins by applying a contrast enhancement strategy, 

specifically, the CLAHE algorithm, with MOCS for optimal parameter selection to attain 

the highest classification performance. Subsequently, contrast-enhanced images are fed into 

the CNNs to further improve image quality and classification accuracy. Our approach is 

employed to categorize three types of chest X-ray images, namely, unhealthy, normal 

(healthy), and pneumonia. To assess the performance of our proposed method, we utilize 

the widely-used "COVID-19 Radiography" dataset. Experimental results yield an accuracy 

rate of 99.16%, a precision rate of 99.20%, and a sensitivity rate of 98.99%. These findings 

demonstrate that our proposed model outperforms existing techniques in the literature and 

can be effectively employed for disease detection and classification. 
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1. INTRODUCTION

The initial outbreak of COVID-19, often characterized by 

difficulty breathing and elevated body temperature, emerged 

in Wuhan, China, in the latter half of 2019 [1]. The virus 

rapidly spread worldwide, causing high mortality rates in 

numerous countries and prompting the World Health 

Organization (WHO) to classify it as a pandemic [2, 3]. Unlike 

SARS, COVID-19 not only affects respiratory system organs 

such as the lungs and throat but also causes detrimental effects 

on vital organs like the liver and kidneys. Consequently, 

elderly individuals and those with pre-existing medical 

conditions, such as hypertension, heart disease, chronic lung 

disease, and obesity, are at a higher risk of infection and 

mortality compared to younger, healthier individuals [4]. 

Prominent symptoms among COVID-19 patients include high 

body temperature, dyspnea, fatigue, and dry cough [5]. Signs 

of infection typically appear within a few days after exposure 

to the virus [6]. Given that COVID-19 is highly transmissible, 

it is crucial to rapidly identify carriers to minimize the spread 

of the virus. 

The Reverse Transcriptase Polymerase Chain Reaction 

(RT-PCR) test is a widely used method for diagnosing 

COVID-19 by detecting the presence of viral RNA patterns [7, 

8]. This technique is particularly significant for detecting the 

virus at low concentrations in the body. During the RT-PCR 

test, a swab sample is collected from the person's throat and 

nostril for analysis [7, 9]. However, two major drawbacks of 

the RT-PCR test are the lengthy duration required for 

obtaining results and the occurrence of false-positive or false-

negative results, which reduce the test's accuracy and 

reliability [10, 11]. 

Due to the limited availability of test kits in many countries, 

accurate disease diagnosis may be significantly delayed [2]. 

Researchers from various disciplines have been seeking faster 

and more reliable alternatives to the RT-PCR test, with 

biomedical imaging emerging as a potential solution [12]. 

Radiology images have demonstrated higher success rates in 

diagnosing COVID-19 when test results are negative despite 

patients exhibiting symptoms [11]. Artificial intelligence and 

machine learning techniques have been applied to radiography 

images of human lungs to determine the presence of COVID-

19 [13]. Chest X-ray images and computed tomography (CT) 

scans are commonly used for detecting pneumonia caused by 

COVID-19, as they are effective in examining respiratory 

system-related diseases such as pneumonia and tuberculosis 

[14]. A close examination of X-ray and CT images reveals 

their potential for diagnosing COVID-19 when combined with 
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artificial intelligence, machine learning, and deep learning 

methods [15]. However, each technique presents its own 

advantages and disadvantages. In comparison, chest X-ray 

images are less expensive and more commonly used, and X-

ray machines are more portable and practical than CT scanners 

[13]. 

Numerous researchers have sought to develop techniques 

for identifying COVID-19 infected patients using chest X-ray 

images. In our proposed method, we employ a multi-objective 

cuckoo search (MOCS) algorithm for contrast enhancement on 

the original images to achieve the highest classification 

accuracy [16]. Following this, contrast-enhanced images are 

input into Convolutional neural networks (CNNs). The main 

contributions of our study can be summarized as follows: 

We utilize a MOCS algorithm to optimize the overall 

contrast of the original images by finding the optimal 

parameters for the Contrast Limited Adaptive Histogram 

Equalization (CLAHE) technique. Our results demonstrate 

that a hybrid system, which combines CLAHE, MOCS, and 

CNNs, can classify COVID-19 cases more accurately. 

Due to the efficient results obtained from our experiments, 

our proposed method can serve as an alternative to COVID-19 

test kits for distinguishing COVID-19 cases from healthy 

individuals and those with pneumonia. 

The remainder of this paper is organized as follows: Section 

2 provides an overview of state-of-the-art methods for 

classifying COVID-19 cases. In Section 3, we present a 

detailed description of our proposed method. Section 4 

compares our method with existing techniques in the literature 

based on experimental results. Finally, Section 5 concludes the 

paper. 

 

 

2. RELATED WORKS 

 

There are a huge number of leading-edge techniques based 

upon the usage of machine learning and deep learning together 

exploited in the context of disease detection by means of 

medical images. Most of the techniques are based on deep 

learning, especially on pretrained models. Some methods also 

make use of machine learning algorithms together with deep 

learning, which are known as hybrid methods. 

The researchers [17] employed ResNet-50, ResNet-101, 

ResNet-152, InceptionV3 and Inception-ResNetV2 models for 

diagnosing the disease of COVID-19 cases. Examining over 

the experimental results gained, the ResNet-50 has proven to 

have the best classification accuracy rate in comparison with 

the remaining models. For the diagnosis of disease, The 

researchers [18] employed, the transfer learning algorithms 

VGG-19, Inception, MobileNetV2, Xception, and 

InceptionResNetV2. There are 1427 chest X-rays, in sum, 

exploited in dataset during the course of study. An accuracy 

rate of 96.78% and a sensitivity value of 98.66% gained in the 

experiments. The researchers [19] employed a deep learning 

oriented method in order to categorize COVID-19 patients 

based on the chest radiology images. Experiments started 

under the guidance of a previously created dataset that consists 

of 5000 chest X-ray images opened to public. Previously 

trained CNNs, namely, ResNet-18, ResNet-50, DenseNet-121, 

and SqueezeNet were utilized so as to determine the disease of 

patients depending on these pictures. Having used these 

networks, 90% of specificity value and 98% of sensitivity 

value were found on average. The researchers [20] enhanced a 

transfer learning based strategy for increasing the predictive 

performance of classification task for COVID-19 infected 

people. With the help of the SqueezeNet1.0 and DenseNet121 

structures employed in the proposed method, it was shown that 

the classification accuracy rates are dramatically higher in 

terms of both positive samples and negative samples. It can be 

seen that, studies conducted on using pretrained models lead 

to a superior performance, which have achieved an accuracy 

rate above 96%. 

The researchers [21] examined over the diagnostic value 

and the stability of chest CT as opposed to using RT-PCR 

specimen. It was shown that high sensitivity values are 

obtained in the end of experiments. Therefore, chest CT might 

likely to be employed as a plausible and fundamental means 

for the diagnosis of COVID-19 in the regions where it is 

relatively significant to determine whether or not a patient is 

infected by the COVID-19 virus immediately. The researchers 

[22] defined and identified prominent CT results obtained 

from a group of patients infected by the nCov virus in China 

with the overall purpose of enabling radiologists to recognize 

this newly explored epidemic. In this manner, this will in turn 

end up with early diagnosis to start the medical treatment and 

fast isolation of virus-infected patients from healthy people in 

community. It is also observed that COVID-19 virus has 

resemblance in terms of visible aspects with the same viral 

family members such as pneumonia, Sars and Mers. The study 

[23] showed that, as the rate of patients that are infected by the 

COVID-19 virus grows faster, the need for an alternative swift 

technique for the diagnosis of COVID-19 becomes a 

dramatically significant purpose due to the lack of sufficient 

amount of test kits as well as the necessity for the isolation of 

patients from those of healthy ones in a short period of time. 

As a consequence, they come up with a better method in order 

to enable radiologists and clinical practitioners recognize the 

patients more accurately and quickly. Their suggested method 

has an overall accuracy rate of 95% for the 3-class 

classification where the classes include COVID-19, 

pneumonia, and normal. The researches [1] recommended a 

deep transfer learning method so as to categorize people 

infected virus. Moreover, having exploited a top-2 smooth loss 

function with cost-sensitive attributes, they were able to 

manage the problems caused by noisy and imbalanced datasets. 

Finally, they obtained efficient results in comparison with its 

counterparts employed in the context of supervised learning 

models. The study [24] extract features using ResNet50 and 

SVM classifier along with a linear kernel function, and obtain 

an overall accuracy rate of 94.7%. It was shown that the 

proposed method has a huge impact on the detection of 

COVID-19 infected patients based upon employing a distinct 

set of local texture descriptors. The study [25] used 10 widely 

used pre-trained CNN models to predict positive cases. Best 

performance is obtained using ResNet-101, which 

successfully distinguished positive COVID-19 cases from 

other atypical and viral pneumonia diseases, with an accuracy 

rate of 99.51%. Using ResNet-101 also provided a low cost 

solution and high sensitivity. The study [26] proposed a patch-

based CNN model for classifying the chest X-ray images for 

COVID-19. Preprocessed data are supplied to segmentation 

network, which extracts the lung area from the image. Then, 

classification is made using the extracted area by employing 

majority voting. In addition, a global saliency map is created 

using gradient-weighted class activation map (Grad-CAM). 

The study [27] proposed a multiscale attention guided deep 

network with soft distance regularization (MAG-SD) in their 

study. They also used a deep network, MA-Net, for prediction 
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task and creation of the attention from multiscale feature maps. 

Augmentation is applied on the data. The findings 

demonstrated that the proposed MAG-SD model has 

advantage over other state-of-the-art methods. The study [28] 

employed MobileNet, which is a deep transfer learning model. 

The proposed model provided a fast convolution operation and 

a prediction time less than 0.1 seconds (s) besides that it 

provided a high accuracy rate, which reached 96.33%. The 

study [29] proposed a model based on decision tree (DT) 

classifiers and CNNs. 3 DT models are used together with 3 

CNNS, where each DT is trained by corresponding CNN. First 

DT classifies images as normal or abnormal, second DT 

identifies tuberculosis and third DT identifies COVID-19. 

First DT, second DT and third DT reached accuracy rates of 

98%, 80% and 95%, respectively. The study [30] exploited 

CovidNet and occlusion sensitivity maps (OSM). OSM is used 

to demonstrate the parts important in chest X-ray images, for 

CovidNet classification decision. An input layer size of 

448×448 is selected for capturing more features from 

grayscale images. An accuracy rate of 99.96% is achieved 

using CovidNet, on average. The study [31] used different 

CNN architectures, which are trained using ImageNet to be 

used in feature extraction from chest X-ray pictures. After that, 

the CNNs are integrated various machine learning algorithms. 

The highest accuracy rate obtained from the MobileNet with a 

linear kernel SVM, which achieved 98.5%. Deep learning 

models, especially pretrained models, CovidNet and ResNet-

101, achieved an accuracy rate of nearly 100%. Success rates 

of hybrid methods or machine learning based methods are not 

as high as of those deep learning based methods’ success rate. 

Among the reviewed studies in this paragraph, the best 

accuracy rate is 98%, which is obtained using DT. The studies 

showed that it would be a plausible reason to use deep learning 

models in order to achieve higher accuracy. 

The transfer learning architectures are costly due to their 

need to huge amount of data and high number of layers for the 

training phase, which will cause more complexity although 

they are suitable when they have been already trained [32]. 

However, classical CNNs are usually less complex, which can 

be combined with an enhancement method. It can be observed 

that metaheuristic methods can enhance the image in a short 

time with a high success [33, 34]. An optimized and high 

performance model can help health experts to diagnose 

COVID-19 more efficiently. With this motivation, in this 

paper, a method combining MOCS-CLAHE with CNN is 

proposed for deriving a light-weight solution. 

 

 

3. MATERIALS AND METHODS 

 

Applications It is essential to improve the quality of chest 

X-ray images and increase the accuracy rates of the supervised 

models, according to the studies [35, 36]. In our method, we 

employed a multi-objective cuckoo search (MOCS) [37] based 

contrast limited adaptive histogram equalization (CLAHE) [38] 

which is known as (MOCS-CLAHE), which is proposed by 

Kuran and Kuran [16]. In this section, this method will be 

explained with its components. 

 

 

3.1 Multi-Objective Cuckoo Search algorithm (MOCS) 

 

MOCS [37] is a multi-objective metaheuristic optimization 

method which is motivated by the actions of cuckoo birds and 

appendage of the classical cuckoo search (CS) algorithm [39]. 

Positions that belong to solutions are represented as cuckoos’ 

eggs, and like CS, MOCS uses Lévy flights to determine 

positions of the cuckoos. Fitness scores of the cuckoos are 

evaluated using a predetermined fitness function (as known as 

objective function). Fitness function is selected according to 

the problem type. For MOCS, since it is a multi-objective 

algorithm, multiple fitness functions could be determined. 

Hence, multiple solutions are obtained and these solutions are 

fit in a Pareto front. A set of non-dominated solutions form the 

Pareto front, that is, if we accept two solution vectors as v and 

t, no component of v is larger than the complementary part of 

t, and one or more of the components are smaller. Therefore, 

Pareto front for an optimization problem can be given as in Eq. 

(1), where s is the solution and S is the solution set. In multi-

objective version of CS algorithm, each of the cuckoos lays K 

eggs instead of one egg. 

 

PF={s ∈ S | ∃s'∈S : s'<s} (1) 

 

Cuckoos behave in a parasitic way. Hence, an intruding 

cuckoo would lay its egg to other cuckoo’s nest, since the 

algorithm imitates brood parasitism. The host cuckoo bird 

might become aware of an intruding cuckoo’s eggs with a 

probability pa. If the host cuckoo becomes aware, it could 

either throw the egg from the nest or perform a Lévy flight to 

build a completely new nest. A simple Lévy distribution 

formula can be given as Eq. (2). 

 

L(s, γ, μ)= {
√

γ

2π
exp [-

γ

2(s-μ)
]

1

(s-μ)
3

2⁄
 if 0<μ<s<∞,

0 if s≤0

 (2) 

 

In Eq. (2), μ is the minimum step parameter, γ is the scale 

parameter. As s→∞, we can have Eq. (3). 

 

L(s, γ, μ)=√
γ

2π

1

s3/2
 (3) 

 

The birds update their positions using Eq. (4), which 

employs Lévy flight. 

 

xi

(t+1)
=xi

(t)
+α⨁L(λ) (4) 

 

 
 

Figure 1. Pseudocode of MOCS algorithm 

 

In Eq. (4), xi
(t+1) is the solution for the next iteration, xi

t is 

the solution at the current iteration, α is a scaling factor which 

must be bigger than 0, ⊕ symbol represents the element-wise 

multiplying operator, L(λ) is the Lévy distribution of the λ 

such that 1<λ<3. Pseudocode of the MOCS is shown in Figure 

1. For Eqns. (1)-(4), the study [37] can be referred. 
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3.2 Contrast enhancement with Multi-Objective Cuckoo 

Search (MOCS-CLAHE) 

 

CLAHE [38] is a local contrast enhancement technique 

devised to overcome limitations of AHE [38]. Instead of 

applying global histogram equalization (HE) [40], it divides 

images into separate contextual regions and equalizes them 

independently. CLAHE allows two parameters, namely, clip 

limit (CL) and block size (BS). CL clips the histogram of each 

contextual region to a predetermined limit, in this way, 

CLAHE prevents any unwanted noise and over-enhancement. 

Also, BS parameter comprises two subparameters, M and N, 

where M is the number of contextual regions in x-axis and N 

is the number of contextual regions in y-axis. After 

enhancement of each contextual region, these regions are 

merged using bilinear interpolation to remove inconsistencies 

on the borders of the regions, since they are equalized 

independently. 

MOCS algorithm is selected for optimizing the CLAHE 

parameters in order to increase visual quality. Two quality 

metrics are employed as fitness functions for this purpose. 

Output images are evaluated using these two metrics by 

optimizing parameters of CLAHE using MOCS at each 

iteration. First one is discrete entropy (DE), which indicates 

the level of details in an image [41]. Images with more details 

have higher DE values. Since level of details in an image is 

important for deep networks for extracting features, DE is one 

of the appropriate functions to evaluate output images. DE can 

be expressed as given in Eq. (5). 

 

DE=- ∑ P(xi)𝑙𝑜𝑔2P(xi)

n

i=1

 (5) 

 

In Eq. (5), P(xi) is the probability density function (PDF) of 

the gray level i of image and n is the number of gray levels. A 

fast noise variance estimation method (NVE) [42] is employed 

to prevent noise in the output images, since noise in the 

resultant images can cause false positive and false negative 

decisions for our deep network model. Discrete version of 

NVE is given in Eq. (6). 

 

σn=√
π

2

1

6(W-2)(H-2)
∑ |I(x,y)* N|

I

 (6) 

 

In Eq. (6), I is the image, W is the image width, H is the 

image height, N is the noise estimation operator, x is the spatial 

coordinate in the x-axis and y is the spatial coordinate in the 

y-axis, respectively. It can be seen that, image I is convolved 

with the noise estimation operator N and summation of all 

pixels in the resulting convolved image is calculated. Noise 

estimation should be insensitive to edges, hence, difference of 

the two masks approximating to Laplacian of an image is taken 

to provide a noise estimation operator N, which is given in Eq. 

(9). L1 and L2 are used for computing N, which are given in 

Eq. (7) and Eq. (8), respectively. 

 

L1= [
0 1 0

1 -4 1

0 1 0

] (7) 

  

L2=
1

2
[
1 0 1

0 -4 0

1 0 1

] (8) 

σn=√
π

2

1

6(W-2)(H-2)
∑ |I(x,y)* N|

I

 (9) 

 

Since MOCS-CLAHE maximizes DE and minimizes noise, 

the fitness function using DE, can be given as in Eq. (10). For 

minimizing noise, it is sufficient to compute the multiplicative 

inverse of the NVE as second fitness function, which is given 

in Eq. (11). For Eqns. (6)-(9), the study [42] can be referred. 

Sample X-ray images and their enhanced versions are given in 

Figure 2. Illustration of the proposed method in this study, is 

given in Figure 3. 

 

f1=DE (10) 

 

𝑓2=1/NVE (11) 

 

 
 

Figure 2. Sample X-ray images are given on the top row and 

their enhanced versions are given on the bottom row using 

MOCS-CLAHE: (a) COVID-19, (b) Pneumonia, (c) Normal 

 

 
 

Figure 3. Illustration of the proposed method 

 

3.3 Convolutional neural networks 

 

Convolutional neural networks can be classified as being a 

multi-layer, feed-forward neural network which might be 

exploited for those of tasks such as object detection and image 

analysis in the context of image processing. Functionality of 

CNNs mimic the inner workings of human brain. In addition, 

patterns between inter-connected neurons in a human brain are 

akin to the organizational structure of visual cortex [43]. 

CNNs have proven to be relatively efficient neural networks 

for image recognition and classification problems. CNNs are 

mathematical structures that are typically made up of three 

types of layers, namely, convolution, pooling, and fully 

connected layers [44]. Convolution and pooling layers are 
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responsible for extracting features whereas fully connected 

layers are liable for sending the extracted features for the 

classification to the last output. 

Convolutions are necessary in order for the neural network 

to interpret the numerical pixel values in an image. Therefore, 

goal of the convolutional layer is to convert the original image 

into numerical values so that the neural network can interpret 

the image accurately, and thus, can extract the patterns 

correctly subsequently [45]. In convolutional layer, filters are 

passed through the input image. Formula of the convolution is 

given in Eq. (12) below. In Eq. (12), M corresponds to the 

feature map while w represents the convolution kernel, I is the 

original image, m and n are the spatial coordinates for image 

I, and, i and j are the coordinates used for kernel. 

 

M(I, j)=(I*w)(I, j)= ∑  

 

m

∑ I(m, n)w(I-m, j-n)

 

n

 (12) 

 

Following the operations performed in the convolutional 

layer, it is customary to make use of a non-linear layer or 

activation layer in a CNN. Moreover, the main purpose of this 

layer is that to transform a system, which performs linear 

computations, into one which is non-linear. Rectified linear 

unit (RELU) calculates all input values given to it by 

employing f(x)=max (0, x) function. In essence, in this layer, 

all negative input values are replaced by 0. As a consequence, 

this layer increases the non-linear features of the network and 

the model while the features extracted from convolutional 

layer remains intact [46]. RELU formula is given in Eq. (13). 

 

ReLU(x)=max(x,0) (13) 

 

Pooling is another essential operation performed after 

applying convolution and RELU in the previous layers. 

Primary target of pooling is to decrease the number of 

parameters as well as to reduce the overall computational cost. 

Pooling layer runs independent of each feature map. Of all 

pooling methods, maximum pooling might be considered to be 

the most prevalent one among its counterparts. A max pooling 

example is shown in Figure 4. 

 

 
 

Figure 4. Illustration of the maximum pooling 

 

Upon the termination of creating subsampled features from 

convolutional and RELU layers, these features are connected 

to the fully-connected layer. Extracted features are connected 

to either one or more fully-connected layer. Here, each input 

is connected to one output, and each neuron has an associated 

weight value that can be learned [46]. The last fully-connected 

layer, generally, has the same number of output nodes and 

classes, and classification is made in this layer. Even though it 

is possible to employ distinct classifiers in the last layer, 

Softmax, most of the time, is the one that is preferred more 

frequently. Softmax formula is given in Eq. (14), where e 

denotes exponential function, xi and xk are the elements of the 

input vector, respectively. Softmax ensures that the output 

values of neurons lie in the interval (0, 1). 

 

Softmax(𝑥𝑖)=
e𝑥𝑖

∑ e𝑥𝑘N
k=1

 (14) 

 

 

4. DESIGN OF THE CNN ARCHITECTURE 

 

In CNN architecture, that is exploited in our study, is made 

up of 1 input layer, 2 convolutional layers, 2 pooling layers, 2 

fully-connected layers, and 1 output layer. There are 8 

different layers in total in the designed architecture. There are 

128 convolution filters in the first convolutional layer while 

there are 64 convolution filters in the second convolutional 

layer. Additionaly, RELU is employed as the activation 

function. Moreover, following each convolution and RELU 

operation performed, maximum pooling of size 2×1 is applied. 

Designed architecture is given in Table 1. 

 

Table 1. Designed CNN architecture 

 

No 
Layer 

Name 
Explanation Properties 

1 Input Input Vector - 

2 'conv1' Convolution 
128 convolution filters 

of size 12×12 

3 'relu1' ReLu - 

4 'pool1' Maximum Pooling 2×1 pooling 

5 'conv2' Convolution 
64 convolution filters 

of size 6×6 

6 'relu2' ReLu - 

7 'pool2' Maximum Pooling 2×1 pooling 

8 'fc1' 
Fully-connected 

Layer 
2048 neuron 

9 'relu3' ReLu - 

10 'drop1' Dropout 50% dropout 

11 'fc2' 
Fully-connected 

Layer 
2048 neuron 

12 Output Softmax 3 classes 

 

 

5. EXPERIMENTAL APPLICATIONS 

 

5.1 Chest X-Ray dataset collection and description 

 

In our work, a well-known open access dataset, which is 

prevalently chosen in the context, and therefore, is thought of 

being accepted as a benchmark, is exploited. The dataset, 

employed, is called COVID-19 Radiography [47, 48] and it is 

gathered together by making use of the Kaggle database. 

Further information regarding the data set is provided in Table 

2. There are three classes in the COVID-19 Radiography 

dataset, namely, COVID-19, normal and pneumonia. 

Furthermore, of all images, 1143 images belong to COVID-19 

class, 1341 belong to normal class, and 1345 belong to 

pneumonia class. Sample chest X-ray images in each class are 

shown in Figure 5.
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Table 2. Description of the dataset used 

 
Dataset Name COVID-19 Normal Pneumonia 

COVID-19 Radiography Database [47, 48] 1143 1341 1345 

 

 
 

Figure 5. Sample X-ray data: (a) COVID-19, (b) Pneumonia, (c) Normal 

 

5.2 Evaluation metrics 

 

Accuracy, precision and sensitivity are computed to 

evaluate the performance of our method. The formulas of the 

performance metrics are given in Eqns. (15)-(17). For Eqns. 

(15)-(17), the study [49] can be referred. 

 

Accuracy=
|TP|+|TN|

|TP|+|FP|+|FN|+|TN|
 (15) 

 

Precision=
|TP|

|TP|+|FP|
 (16) 

 

Sensitivity=
|TP|

|TP|+|FN|
 (17) 

 

5.3 Experimental results 

 

Having described in this section are the results obtained 

from the experiments based on our proposed method. The 

proposed model was developed using MATLAB 2020b and 

tested on a computer with an intel core i7 processor running at 

5.0GHz processor, 32GB memory, and RTX 3050 OC 8GB 

GPU hardware. Using a 10-fold cross-validation technique, 

chest X-ray images are randomly divided as training set and 

test set. The network is trained by adjusting altered 

hyperparameters such as mini-batch size and learning rate. 

Network is trained using different hyperparameters in the 

study. The mini-batch sizes are 32, 64, 128 whereas learning 

rates are chosen as 0.1, 0.01 and 0.001. The epoch range is 

chosen as 25. 

Table 3 showing the results for CNN without image 

enhancement can be summarized as follows: 

• In the case of having a mini-batch which is of size 32; 

by setting the learning rate as 0.1, the maximum accuracy and 

precision results gained, which are 96.57% and 96.17%, 

respectively. By keeping the mini-batch size same, but 

changing the learning rate to 0.01, the maximum sensitivity is 

accomplished with a rate of 96.93%. 

• In the second stage, with the mini-batch of size 64; 

with the learning rate of 0.1, the maximum accuracy, precision 

and sensitivity are obtained as 96.74%, 96.65% and 96.78%, 

respectively. 

• In the last step, for the mini-batch of size 128; with 

the learning rate is 0.01. Also, the maximum accuracy and 

precision obtained are 96.52% and 96.66%, respectively, and 

by employing the learning rate which is set up as 0.1, the 

maximum sensitivity is accomplished with a rate of 97.15%. 

Table 4 showing the results for CNN after applying contrast 

enhancement with multi-objective cuckoo search can be 

summarized as follows: 

• When the mini-batch size is chosen as 32 and the 

learning rate is selected to be as 0.001, the maximum accuracy 

and precision rates acquired turned out to be 98.41% and 

97.59%, respectively. In the case of using the same mini-batch 

size of 32, but changing the learning rate to 0.01, the maximum 

sensitivity is seen to be 98.99%. 

• In the second stage, where the learning rate is selected 

to be as 0.001 for the mini-batch of size 64, the maximum 

accuracy rate that is gained is 99.16%; using the learning rate 

of 0.001, the maximum precision and the maximum sensitivity 

are found to be 98.85% and 98.51%, respectively. 

• At last, by choosing the mini-batch of size 128; using 

the learning rate of 0.001, the maximum accuracy and 

precision are obtained as 99.12%, 98.64%, respectively, and 

with the learning rate selected to be as 0.01, the maximum 

sensitivity is accomplished with a rate of 98.78%. 

The confusion matrix is given in Figure 6. This indicates the 

peak accuracy received from networks. The accuracy and loss 

curves of the best results found in the training and test 

sequences are shown in Figure 7. 
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Table 3. Results obtained from CNN without image enhancement 

 
Modell Batch-Size Learning Rate Accuracy % Precision % Sensitivity % 

CNN (without image 

enhancement) 

32 

0.1 96.57 96.17 95.43 

0.01 95.16 95.69 96.93 

0.001 95.51 95.06 96.32 

64 

0.1 95.24 96.36 95.31 

0.01 96.74 96.65 96.78 

0.001 95.78 96.01 96.04 

128 

0.1 95.83 95.03 97.15 

0.01 96.52 96.66 95.25 

0.001 96.54 96.59 95.83 

 

Table 4. Results obtained from CNN after applying contrast enhancement with multi-objective cuckoo search algorithm 

 
Modell Batch-Size Learning Rate Accuracy % Precision % Sensitivity % 

CNN (with image 

enhancement) 

 0.1 97.53 99.09 98.84 

32 0.01 98.41 97.59 98.99 

 0.001 99.05 99.20 98.08 

 0.1 98.86 98.82 97.71 

64 0.01 99.16 98.54 98.04 

 0.001 97.37 98.85 98.51 

 0.1 98.16 98.48 98.34 

128 0.01 97.44 97.68 98.78 

 0.001 99.12 98.64 97.39 

 

Table 5. Performance comparison with other studies using COVID-19 radiography dataset 

 
Author Approach Accuracy (%) 

[47] DenseNet201 with image augmentation 97.94 

[50] ALexNet & LSTM 98.70 

[51] COVIDetectioNet with Relief 99.18 

[52] MobileNet 87.5 

[53] VGG-16 with histogram equalization 98.75 

[54] PDCOVIDNet 96.58 

Proposed System CNN model with MOCS-CLAHE image Enhancement 99.12 

 

 
 

(a) (b) 

 

Figure 6. Confusion matrix of two models: (a) without MOCS-CLAHE, (b) with MOCS-CLAHE 
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Figure 7. Graphs of accuracy and loss on training and validation data 

 

In this study, a performance comparison of the proposed 

method for disease classification is made with current models 

objectively. An overview of important studies using the 

COVID-19 radiography dataset is presented in Table 5. Which 

summarizes the studies that used other datasets for COVID-19 

detection. 

A research paper that used pre-trained deep networks with 

transfer learning, achieved 97.94% accuracy in detecting 

COVID-19 disease using images from the data set. 

Chowdhury et al. [47] applied data augmentation to images in 

the dataset to improving with DenseNet201. Aslan at al. [50] 

used two deep learning models. Firstly, they used AlexNet 

with the transfer learning technique, and secondly, used 

AlexNet and LSTM as hybridized. A better result was 

obtained a classification rate of 98.70% with applied hybrid 

method. Turkoglu et al. [51] used the COVIDetectioNet model. 

In this used model, features are derived from the convolutional 

and fully connected layers of the pre-trained AlexNet 

architecture. In addition, the most effective features were 

determined using the ReliefF feature selection algorithm and 

was obtained classification success 99.18. Arifin et al. [52] 

used a deep learning-based MobileNet and obtained 

classification success 87.5%. Progga et al. [53] used VGG-16, 

VGG-19 and MobilNetV2 networks in their own offered 

model. They increased the diversity in the dataset by 

histogram equalization and achieved a 98.75% success rate 

with VGG-16. Chowdhury et al. [54] used a deep learning-

based model called PDCOVIDNet. They obtained rate of 

accuracy 96.58% with this model. The second highest 

accuracy achieved in this table is by the proposed system, 

which uses a CNN model with MOCS-CLAHE image 

enhancement, achieving an accuracy of 99.12%. This indicates 

the effectiveness of MOCS-CLAHE in enhancing the images 

and improving the model's ability to detect COVID-19. 

However, it is important to note that these models are trained 

on a specific dataset and their performance may vary when 

applied to different datasets or real-world scenarios. Overall, 

the use of deep learning models for COVID-19 detection has 

shown promising results, with high accuracy achieved in 

several studies. These models have the potential to aid medical 

professionals in diagnosing COVID-19 cases quickly and 

accurately. However, further research is required to ensure the 

reliability and generalizability of these models before they can 

be widely adopted in clinical practice. Despite the high 

accuracy achieved by some of these models, there are still 

limitations to consider. One major challenge is the lack of 

large and diverse COVID-19 datasets, which can affect the 

generalizability of the models. Additionally, the accuracy of 

the models can be impacted by factors such as image quality, 

variability in imaging equipment, and the prevalence of 

COVID-19 in the population. Therefore, it is important to 

continue collecting and curating large and diverse datasets to 

ensure the reliability and generalizability of these models. 

Deep learning models have shown great potential for COVID-

19 detection using X-ray and CT scan images. While the 

models listed in the table have achieved high accuracy, it is 

important to consider their limitations and the need for further 

research. 

 

 

6. CONCLUSION 

 

It is very significant to detect the patients who got infected 

by COVID-19 in an early stage in order to prevent the disease 

from spreading among people rapidly. Furthermore, since the 

number of test kits for the diagnosis of COVID-19 are limited 

and are not readily reached to health practitioners, it gives rise 

to come up with a better and faster method as a replacement 

for test kits. In our study, we exploit MOCS-CLAHE together 

with CNNs. By employing MOCS-CLAHE, we ensure to 

obtain the optimal parameter values for the contrast 

enhancement of the chest X-ray images which pave the way 

for the most accurate classification to be made by CNNs. 

Finally, experimental results prove that outputs of the CNNs 

used in our study have higher accuracy rates for classifying 

three cases, namely, COVID-19, normal, and pneumonia. In 

the wake of our experiments, it is seen that our method has 

99.16% accuracy rate, 99.20% precision rate, and 98.99% 

sensitivity rate which can be considered to be relatively 

successful compared with other methods used in the literature. 

Although training CNNs are computationally expensive and 

large number of images are required to prevent overfitting, less 
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time is consumed for the prediction of new cases after training. 

In addition, without pre-knowledge, the proposed system can 

enhance the image via MOCS-CLAHE method. This will 

provide enhanced data to deep learning model, which will help 

to increase overall accuracy. As a consequence, experimental 

results clarify that our method can be used by health 

practitioners to diagnose COVID-19 cases reliably and rapidly. 

The major drawback of this method is selecting optimum 

MOCS parameters according to device. Some old machines 

might be incapable to process a huge population belong to 

MOCS, for enhancing x-ray images. Because of this situation, 

population size should be selected carefully. Also, a relatively 

less population size can lead the algorithm to get stuck in a 

suboptimal solution and fail to converge to the global optimum, 

which is the best possible solution for the problem. The 

method proposed in this paper can be employed in health 

clinics for providing more information to the experts. The 

results of this study have important managerial implications 

for healthcare practitioners and policymakers involved in 

COVID-19 diagnosis and treatment. Firstly, the deep learning 

model developed in this study demonstrates high accuracy in 

detecting COVID-19 from X-ray images, providing a valuable 

tool for healthcare providers in identifying potential cases. 

This can help in early detection, isolation, and treatment of 

COVID-19 patients, potentially reducing the spread of the 

virus and improving patient outcomes. Secondly, our study 

shows that the use of image enhancement techniques, such as 

MOCS-CLAHE enhancement, can improve the accuracy of 

the deep learning model in detecting COVID-19 from X-ray 

images. This suggests that healthcare providers can potentially 

improve the quality of X-ray images and enhance the 

performance of the deep learning model by using these 

techniques. Furthermore, the study highlights the importance 

of image quality in accurate COVID-19 diagnosis and 

emphasizes the need for standardized image acquisition 

protocols to ensure reliable results. Lastly, the study 

emphasizes the importance of large and diverse COVID-19 

datasets in training deep learning models for accurate COVID-

19 diagnosis. Policymakers and healthcare providers should 

prioritize the collection and sharing of large and diverse 

datasets to improve the generalizability and reliability of 

COVID-19 detection models. This can potentially lead to more 

accurate and efficient COVID-19 diagnosis and management, 

reducing the burden on healthcare systems and improving 

patient outcomes. In the future studies, hybrid optimization 

techniques which combines one or more optimization 

algorithms to run together can be opted in COVID-19 

diagnosis. These hybrid optimization techniques can be 

employed together with more advanced deep learning 

architectures to increase accuracy. 
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CNN Convolutional neural networks 

EOG Electrooculography 

ECG 

EEG 

Electrocardiography 

Electroencephalography 

CLAHE 
Contrast limited adaptive histogram 

equalization algorithm 

MOCS 
Multi-objective cuckoo search algorithm 

optimization 
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