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Automated food logging is an essential component of modern dietary management, and food 

recognition plays a crucial role in this process. However, the recognition of dishes and food 

items unique to specific cultures or regions remains a less explored area. In this study, we 

focus on the automatic recognition of Thai cuisine, employing transfer learning techniques 

and comparing the performance of 20 state-of-the-art convolutional neural networks. We 

investigate the impact of hyperparameters, such as batch size and image resolution, as well 

as image preprocessing methods on classification accuracy and training time for the top-

performing models. Our evaluation, using the THFOOD-50 dataset consisting of 15,688 

images across 50 classes, demonstrates that the optimal model achieves top-1 and top-5 

classification accuracies of 90.44% and 99.97%, respectively, representing a significant 

improvement over previous results. We find that increasing image resolution substantially 

enhances accuracy, while batch size exerts a negligible effect. Moreover, cropping the edges 

of images can further improve accuracy, but this technique is only effective when employing 

low image resolution. Our findings contribute to the development of advanced food 

recognition algorithms, with potential applications in dietary management and nutrition 

planning. 
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1. INTRODUCTION

Food logging or journaling, the practice of recording 

consumed food types and quantities, offers numerous benefits. 

It enables users to track calorie and nutrient intake, which is 

particularly valuable for weight management, managing 

medical conditions (e.g., diabetes), and maintaining a balanced 

diet. Food logs can also help users identify foods that trigger 

issues such as irritable bowel syndrome or allergies and 

optimize eating habits by examining meal timing and 

frequency. While consumers generally know what they eat, 

manually logging food intake can be cumbersome, even with 

smart mobile applications. Barcode scanning offers a solution 

for packaged products but fails to address homemade meals or 

restaurant dishes. Consequently, an automatic food labeling 

system based on food images would greatly enhance 

convenience and support healthier lifestyles. 

Our focus is on food recognition, rather than the estimation 

of consumed amounts, which is challenging to determine from 

images alone. We concentrate on Thai cuisine, a less explored 

area in food recognition, necessitating a large, labeled food 

image database for model training. We employ Convolutional 

Neural Networks (CNNs), a class of artificial neural networks 

well-suited for classifying images, videos, and audio, as our 

classification model. Food recognition can be considered a 

subtask of object recognition, where many models have been 

created and improved. However, food images typically 

represent a small subset of object classes in datasets, and 

generating highly accurate models requires a vast dataset. 

Publicly available food recognition datasets, especially those 

focused on Thai food, do not yet meet this criterion. Thus, we 

utilize transfer learning to adapt state-of-the-art models 

pretrained on larger object recognition datasets to our task. 

While transfer learning has been successfully implemented 

in food image classification models, previous works often 

evaluate only a few models, overlooking key factors such as 

preprocessing methods, image resolution, and hyperparameter 

tuning. Our study aims to bridge this research gap through 

extensive model comparison and exploration of how model 

hyperparameters, image resolution, and preprocessing 

methods affect performance. We achieve a 90.44% top-1 

accuracy on the THFOOD-50 dataset, demonstrating that 

higher image resolutions significantly improve classification 

accuracy, while batch size has a minimal effect. We also find 

that edge cropping is beneficial at low image resolutions but 

detrimental at higher resolutions. 

The remainder of the paper is organized as follows: Section 

2 presents the literature review. Section 3 describes the dataset, 

models, and methods used in the study. Section 4 evaluates the 

proposed method and presents the results. Conclusions are 

provided in Section 5. 

2. RELATED WORK

Automatic object recognition and image classification have 

been extensively researched, with numerous successful 

models developed and refined. Notable networks include 

AlexNet [1], VGGNet [2], ResNet [3], InceptionV3 [4], 

MobileNet [5], GoogLeNet [6], and DenseNet [7]. Advanced 

object detection methods, such as Faster R-CNN [8] and 

YOLOv7 [9], combine object recognition and localization 
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tasks. Pretrained versions of these networks on comprehensive 

public datasets like ImageNet [10] can be directly applied to 

tasks with labels overlapping with the original dataset or 

indirectly via transfer learning when labels differ. CNNs have 

been employed for image classification and object detection 

across various domains, including medical image 

classification [11, 12], plant disease recognition [13-15], face 

recognition [16], and document classification [17, 18]. 

Previous research on automated food image recognition has 

leveraged state-of-the-art CNN models trained on specific 

food datasets [19-25], consistently employing transfer 

learning to enhance prediction accuracy. These studies 

typically evaluate a limited number of CNN models, providing 

little insight into the performance of alternative models. 

Moreover, they often neglect the time-consuming process of 

hyperparameter optimization, omitting valuable information 

on how hyperparameters impact results and optimal values. 

Critical factors like preprocessing methods and image 

resolution are also rarely investigated. 

Our work addresses these gaps by focusing on model 

comparison and hyperparameter optimization, streamlining 

further research in this area. As food is region and culture-

specific, it is vital to collect and make publicly available 

datasets from around the world to develop accurate models for 

each region. A survey of datasets [26] reveals a lack of datasets 

for many regions, including Thailand. Currently, the only 

publicly available Thai food image dataset is THFOOD-50 

[27], containing 15,688 images across 50 classes. We use this 

dataset to build and evaluate our models, extending the work 

done in studies [27-29] by applying, comparing, and 

optimizing recent state-of-the-art models. Our findings are 

expected to be applicable to other datasets and tasks due to the 

similarities in food image patterns across cultures. 

 

 

3. METHODOLOGY 

 

In this work we aim to achieve highest prediction accuracy 

possible using existing models and datasets. This is done by 

finding the best way to preprocess the images, finding the best 

model for the task, and optimizing the important model 

hyperparameters. 

 

3.1 Dataset 

 

 
(a) Gaeng Keaw 

Wan (Green Curry) 

 
(b) Kao Moo Dang 

(Red BBQ Pork on 

Rice) 

 
(c) Larb Moo (Pork 

Spicy Salad) 

 

 
(d) Som Tam (Papaya Salad) 

 

 
(e) Dumpling 

 

Figure 1. Examples of images in the THFOOD-50 dataset 

We use THFOOD-50 dataset [27] to train and evaluate 

models. It contains 15,688 images of Thai food in 50 classes, 

chosen from commonly consumed dishes in Thailand. Only 

dishes generally consumed as main courses are included. The 

images were collected from the Internet using three search 

engines: Google, Bing, and Flickr. Each image contains only 

a single dish. Each class contains 183 to 677 images. The 

images are in their original resolution, which allows us to 

evaluate the models at multiple resolutions. The dataset is 

already divided into training and test sets, in 90:10 ratio. We 

further divide the training set into a smaller training set and 

validation set in 70:20 ratio to find the optimal number of 

training epochs. Examples of images are shown in Figure 1. 

 

3.2 Preprocessing 

 

Images in the THFOOD-50 dataset has already been labeled 

and prepared. The only preprocessing steps necessary are 

cropping and/or resizing the images. All models evaluated in 

this work support arbitrary image sizes, as long as they are not 

too small. However, as all of the models are designed for and 

trained on square-shaped images, we first center-crop all 

images to have a square shape. The images are then optionally 

further edge cropped before they are resized to the size 

expected by the models. 

 

3.3 Models 

 

Many CNN models have been introduced in recent years. 

One of the most commonly used datasets to benchmark these 

models is ImageNet [10] which is much larger than the 

THFOOD-50 dataset. While the patterns found in images of 

nature and everyday objects in ImageNet may have some 

similarities with those found in images of food, there are still 

significant differences. As a result, classification accuracy or 

ranking of models in food recognition task cannot be directly 

inferred from their results in the object recognition task. 

Therefore, we aim to include as many state-of-the-art models 

as possible in the comparison. The details of the models are 

shown in Table 1. 

 

Table 1. State-of-the-art models included in the comparison 

 
Model Number of parameters 

MobileNet [5] 3.2M 

MobileNetV2 [30] 2.3M 

MobileNetV3Small [31] 0.9M 

MobileNetV3Large [31] 3.0M 

NASNetMobile [32] 4.3M 

EfficientNetV2B0 [33] 5.9M 

EfficientNetV2B1 [33] 6.9M 

EfficientNetV2B2 [33] 8.8M 

EfficientNetV2B3 [33] 12.9M 

EfficientNetV2S [33] 20.3M 

DenseNet121 [7] 7.0M 

RegNetX016 [34] 7.9M 

RegNetY016 [34] 9.9M 

RegNetX032 [34] 14.4M 

RegNetY032 [34] 18.0M 

Xception [35] 20.9M 

InceptionV3 [4] 21.8M 

ResNet50 [3] 23.6M 

ResNet50V2 [36] 23.6M 

InceptionResNetV2 [37] 51.8M 
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Figure 2. Two-step model training process 

 

All models used are pre-trained using ImageNet dataset, 

with the weights fixed. A 2D global average pooling layer is 

put on top of the base model, followed by a dropout layer with 

dropout rate of 0.2, before the output layer with 50 classes in 

one-hot encoding format. The loss function used is categorical 

cross entropy loss. Training is done with Adam optimizer with 

default parameters. Each time any model is evaluated, the 

number of training epochs is set using the following two-step 

process:  

1. The model is first trained using the training set and 

validated using the validation set until the validation loss no 

longer improves for 10 consecutive epochs. The epoch with 

the lowest validation loss, averaged over a window of 5 epochs, 

is recorded. 

2. The model is trained from scratch again using the training 

set and validation set combined, and tested using the test set, 

using the number of epochs from step 1. 

A diagram of the process is shown in Figure 2. This process 

ensures that the optimal number of epochs is used for all 

models in all settings, as we have empirically found that the 

optimal value varies significantly between different settings 

and across models. 

 

 

4. EVALUATION 

 

4.1 Experiment setup 

 

The classification accuracy of the models is evaluated using 

the THFOOD-50 dataset. The TensorFlow library is used to 

process data, train, and test all the models. The main 

evaluation metrics are top-1 and top-5 accuracy on the test 

dataset, defined as the number of images that are correctly 

classified divided by the total number of images, where the 

prediction is considered correct if any of the top 1 and 5 classes, 

respectively, matches the correct label. The experiments are 

run on a computer with Intel Core i5-12400F CPU, 64 GB of 

memory, and Nvidia GeForce RTX 3090 GPU, running 

Ubuntu 22.10 operating system. 

We design 4 experiments, with the goal of each being 

finding the optimal value of a hyperparameter or an aspect of 

the model, as follows: 

Experiment 1: Finding the best model 

Experiment 2: Optimizing batch size 

Experiment 3: Optimizing input image resolution 

Experiment 4: Removing edges of images 

 

4.2 Experiment 1: Finding the best model 

 

First, we compare different classification models in their 

default settings described in Section 3.3. The batch size is 

fixed at 256 and the input image resolution is 448×448. Edge 

cropping is not performed. The results are shown in Table 2. 

 

Table 2. Comparison of state-of-the-art models 

 

Model 
Top-1 

accuracy 

Top-5 

accuracy 

Training 

time (s) 

MobileNet 81.50% 99.18% 447 

MobileNetV2 80.87% 99.50% 510 

MobileNetV3Small 85.37% 98.73% 441 

MobileNetV3Large 89.56% 99.81% 340 

NASNetMobile 70.38% 97.23% 1,632 

EfficientNetV2B0 89.56% 99.84% 624 

EfficientNetV2B1 89.00% 99.93% 825 

EfficientNetV2B2 89.31% 99.89% 769 

EfficientNetV2B3 90.44% 99.97% 1,109 

EfficientNetV2S 89.31% 99.89% 1,644 

DenseNet121 85.69% 98.67% 2,338 

RegNetX016 86.06% 99.38% 3,992 

RegNetY016 88.00% 99.40% 2,767 

RegNetX032 87.94% 99.57% 8,023 

RegNetY032 88.50% 99.72% 3,450 

Xception 83.81% 99.75% 2,464 

InceptionV3 79.94% 99.38% 1,168 

ResNet50 86.50% 99.94% 1,427 

ResNet50V2 82.44% 99.64% 790 

InceptionResNetV2 83.31% 99.21% 3,497 

 

Focusing on top-1 accuracy, there is considerable variation 

among the models. EfficientNetV2B3 performs the best, 

achieving top-1 accuracy of over 90% and top-5 accuracy 

close to 100%. All models produce good top-5 accuracy. This 

indicates that most models generally make correct 

classifications, and when they are incorrect, the correct label 

is still in the top 5 labels in vast majority of cases. 

For the remaining experiments, we only include the top 

model and models that achieve accuracy close to the top model. 

These models are MobileNetV3Large, EfficientNetV2B0, 

EfficientNetV2B1, EfficientNetV2B2, EfficientNetV2B3, and 

EfficientNetV2S. In addition, as top-5 accuracy of these 

models is very similar and close to 100%, we will focus only 

on top-1 accuracy as the benchmark metric. 

 

4.3 Experiment 2: Optimizing batch size 

 

During training, images are grouped into batches and all 

images in each batch is processed before the network’s 

weights are updated. Higher batch size has an averaging effect 

which can prevent overfitting, or cause underfitting if it is too 

high. When training using accelerators such as GPUs, it also 

enables a higher degree of parallelization, leading to lower 

training time per epoch. However, the number of epochs 

needed could be higher. Larger batches also require more 

memory on accelerators. We vary the batch size from 32 to 

512. The results are shown in Figure 3. 

Overall, batch size’s effect on top-1 accuracy is small, with 

less than 1% variation within each model. There is no clear 

trend, but on average, increasing batch size slightly increases 

accuracy, up to batch size of 256. Batch size of 512 produces 

slightly lower accuracy. EfficientNetV2B3 achieves highest 

accuracy at all batch sizes. 

On the other hand, batch size’s effect on training time is 

large. Although higher batch sizes increase GPU utilization 

and thus lower training time per epoch, the optimal numbers 

of epochs are much larger. The end result is that higher batch 

sizes increase training time. The takeaway is that the batch size 
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that gives lowest training time can be chosen without worrying 

about classification accuracy. Since batch size of 256 produces 

highest top-1 accuracy on average, we use this value for the 

remaining experiments. 

 

 

 
 

Figure 3. How batch size affect top-1 accuracy (top) and 

training time (bottom) 

 

4.4 Experiment 3: Optimizing input image resolution 

 

While images may come in any resolution, each trained 

CNNs model can only work with images of a single, fixed 

resolution. Fortunately, all models used in this work allow us 

to choose any resolution when building the model architecture. 

Higher resolution images provide more detail while 

significantly increasing computational requirements including 

computation time, main memory, and GPU memory, during 

both training and prediction phases. This is because an image 

with double the height and width contains four times the 

number of pixels, and this number is generally proportional to 

the computational requirements. Therefore, a tradeoff is often 

necessary. All models are pretrained using 224×224 images in 

the ImageNet dataset. We vary the image resolution from 

149×149 to 448×448. The results are shown in Figure 4. 

 

 

 
 

Figure 4. How image resolution affect accuracy (top) and 

training time (bottom) 

 

The results show that image resolution has a significant 

impact on accuracy, especially on the lower end, with higher 

resolution always resulting in higher accuracy regardless of 

model. Although the top model can still achieve 81% accuracy 

with lowest image resolution of 149×149, a small percentage 

of images do not contain enough detail at this resolution, so 

higher resolution is required. The improvement from 

increasing image resolution is not the same for all models, 

however. At 149×149 and 224×224, EfficientNetV2B1 

performs best. At 299×299 and 448×448 however, 

EfficientNetV2B3 achieves the highest accuracy. This is due 

to the fact that more complex models are better able to capture 

the detailed patterns in higher image resolutions, but they 

suffer from overfitting at lower image resolutions. Therefore, 

image resolution should be taken into account when making 

the choice of which CNN model to use. 
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Training time increases roughly proportionally to the size of 

the images. The effect is similar for all models. Interestingly, 

increasing image resolution only slightly increases the optimal 

number of epochs. 
 

4.5 Experiment 4: Removing edges of images 
 

In an image of food, regions with actual food are typically 

in the center, while the edges often contain the food container 

such as a plate, or irrelevant background. Removing the edges 

of an image before it is resized to a specific resolution can 

therefore indirectly improve the resolution of the regions of 

actual food. However, removing too much edge may result in 

important regions missing from the image. We vary the 

amount of edges of image to remove from 0% to 30% in 

increments of 5%. The removal amount indicated applies to 

both the height and the width of the image. For example, a 

1000×1000 image becomes 850×850 with 15% edge removal, 

before it is resized to the resolution expected by the model. 

The results are shown in Figure 5. 

This experiment is performed at two image resolutions, 

224×224 and 448×448, because there is an interrelation 

between image resolution, edge cropping amount, and top-1 

accuracy. At image resolution of 224×224, the trend is 

different for each model, but on average, edge cropping does 

improve classification accuracy. The optimal edge cropping 

amount is 20%. On the other hand, at image resolution of 

448×448, the general trend is that the higher the edge cropping 

amount, the lower the accuracy. The likely explanation for this 

is that image resolution of 448×448 is already high enough for 

the models to capture the fine details. Cropping edges of 

images may remove important information from some images, 

while the increased detail of the remaining portion does not 

improve accuracy much. Therefore, image cropping should be 

considered when using low resolution images, taking into 

account the parts of the image providing essential information 

for the particular task. 

To summarize the results from all experiments, higher 

classification accuracy for image resolution of 448×448 is 

achieved with the EfficientNetV2B3 model, at 90.44% and 

99.97% top-1 and top-5 accuracy, respectively, using batch 

size of 256 and no edge cropping. The best result for image 

resolution of 224×224 is achieved with the EfficientNetV2B1 

model, at 87.44% and 99.88% top-1 and top-5 accuracy, 

respectively, using batch size of 256 and 20% edge cropping. 
 

4.6 Discussion 
 

The best previous results on the THFOOD-50 dataset are 

obtained by Termritthikun and Kanprachar, with top-1 and 

top-5 accuracy of 83.07% and 97.04%, respectively, using 

224×224 image resolution [29]. Our best model lowers the 

top-1 error rate by 25.81% using the same image resolution. 

With higher resolution of 448×448, the top-1 error rate is 

lower by 43.53%. Very high top-5 accuracy means that when 

used in a mobile food logging application, the user can choose 

the correct food label from a list of 5 labels, in the case that the 

top label is incorrect. While there may be further room of 

improvement with better models and preprocessing techniques, 

significant gains will likely require larger datasets. 

Our results also provide rough guidelines for choosing and 

tuning a model for the food recognition task. The 

EfficientNetV2 series of models work particularly well for this 

dataset. While other (generally larger) models perform better 

on the large ImageNet dataset, smaller models are better suited 

for smaller datasets such as the one for this task. Batch size 

only has a small effect on accuracy, with the optimal amount 

likely depending on the dataset. It is important to note that 

models trained using lower batch size converges faster, 

leading to lower overall training time. 

 

 

 
 

Figure 5. How removing edge of images affect accuracy 

 

Image resolution significantly impacts classification 

accuracy as well as computational requirements. Resolution of 

224×224, typically used in image classification research, is not 

enough to provide optimal accuracy. Therefore, higher 

resolution should always be used as long as hardware and the 

computational budget permit. When low image resolution 

(such as 224×224) is unavoidable, edge cropping can help 

indirectly increase resolution by removing unimportant parts 

of the images, which are often the edges of the images. These 
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guidelines can be applied when using convolutional neural 

networks in other image classification tasks as well. 

 

 

5. CONCLUSIONS 

 

This paper proposes a method for automatically recognizing 

Thai food from image, which is essential for automated food 

logging. In the model training pipeline, there are many 

important choices to be made, including CNN model, model 

hyperparameters, preprocessing method, image resolution, 

and image cropping. These choices have a large impact on the 

results, so it is important to optimize them. Previous studies on 

this task do not focus on this aspect, so the aim of this study is 

to make an extensive comparison of these choices to provide 

some guidelines for further research. 

We evaluated 20 state-of-the-art CNN models on the 

THFOOD-50 dataset and were able to achieve 90.44% top-1 

accuracy using transfer learning and by tuning batch size and 

image resolution. The important findings are as follows: there 

is a significant variation of the prediction accuracy of the CNN 

models. Overall, models that work well for the task include 

MobileNetV3Large, EfficientNetV2 group, and RegNet group 

of models, with smaller models being better at lower 

resolution and larger models being better at higher resolution. 

We found that image resolution significantly effects 

classification accuracy, but batch size does not. However, 

higher resolution requires more computational power and 

memory, proportional to image size. When using lower image 

resolution such as 224×224, classification accuracy can be 

improved by cropping edges of images, with 20% cropping 

being optimal for this dataset. The reason behind this is that in 

images of food, actual food is usually in the middle, while the 

edges do not contain useful information. Cropping the edges 

essentially increases the resolution of the important parts. At 

higher resolution however, edge cropping actually reduces 

classification accuracy, because it removes important 

information in a small portion of the images, and the effective 

increase of resolution is no longer as beneficial. We hope to 

see more studies placing a greater emphasis on model 

comparison, hyperparameter tuning, and image resolution, as 

they can have a large impact on the prediction performance 

and give us insights about the models and the task, potentially 

leading to ideas for further improvements. 
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