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The fifth-generation (5G) mobile networks rely on advanced smart antenna systems to 

achieve high accuracy and low latency. In vehicular-to-infrastructure (V2I) scenarios, 

adaptive beamforming methods play a critical role in enhancing network throughput. This 

paper proposes a deep learning-based adaptive beamforming technique using long short-

term memory (LSTM) networks as beamformers to determine complex weights for the 

antenna array, thereby mitigating interference in multiuser environments. Unlike 

conventional minimum variance distortionless beamformers (MVDR) that require 

knowledge of the direction of arrival (DoA) for the desired signal, the proposed LSTM-

based beamformer estimates the desired signal in the presence of interference and noise 

without DoA knowledge. The LSTM network is trained to predict the angles between user 

equipment (UE) and roadside units (RSU) using complex time series input data, resulting in 

a beamformed output. Simulation results demonstrate that the proposed LSTM-based 

beamforming approach achieves comparable performance in terms of throughput, making it 

a promising solution for interference cancellation in 5G V2I scenarios. 
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1. INTRODUCTION

The proliferation of next-generation networks has opened 

new avenues for V2I scenarios. Fifth-generation (5G) 

networks demand high data rates and low latency to meet the 

requirements of V2I scenarios. To address these challenges, 

millimeter Wave (mm-Wave) bands have been proposed to 

mitigate interference in vehicular communication. The 

compact antenna design, made possible by utilizing mm-Wave 

bands, enables more directional beams towards user 

equipment (UE). However, the propagation mechanisms of 

mm-Waves differ significantly from those of lower

frequencies due to their shorter wavelengths. Radio waves can

propagate through space in various ways, such as free-space

propagation, reflection, transmission, diffraction, scattering,

and wave guiding, leading to interference caused by obstacles

like buildings or scattering particles [1].

Although numerous methods and techniques exist to reduce 

interference in 5G scenarios, adaptive beamforming (ABF) 

has emerged as a promising approach for V2I scenarios. This 

method employs compact antenna arrays (e.g., half-

wavelength spacing) with efficient antenna correlation, 

enhancing the performance by obtaining the direction of 

arrival (DOA). Various beamforming techniques have been 

implemented for processing raw data, including acoustic 

signals, audio and video signals, and traditional algorithms 

applied in naval communication, medical imaging, and speech 

processing. Deep learning (DL)-based techniques have also 

been reported for beam management and beam selection, 

requiring real-time data traffic acquisition and collection, such 

as vehicle positions [2-5]. 

Recent efforts have focused on employing adaptive 

beamformers in various 5G use cases. Xing et al. [6] 

implemented a neural deep learning-based network to predict 

user behavior for safe and smart mobility networks. They 

compared the prediction performance of a basic long short-

term memory (LSTM) model and a recurrent neural network 

(RNN) for different energy consumption levels. Ly and Yao 

[7] demonstrated various DL methods in 5G research by

training a convolutional neural network (CNN) based on

LSTM and RNN algorithms, processing data simultaneously

in the form of streams. However, previous work focused on

predicting trajectories for individual users rather than

obtaining system network-level user distribution, which holds

greater value. It was hypothesized that the DL approach could

directly predict user density within the spatial domain.

As signal variations within different channel states are 

influenced by long and short-term dependencies, LSTM 

networks, a special type of deep RNN, appear to be an 

appropriate technique for predicting the number of user 

elements in each limited area due to their inherent ability to 

learn long-term dependencies. The LSTM network addresses 

the vanishing gradient problem, generating uncertainties in 

conventional RNN techniques and capturing long-short term 

spatial and temporal dependencies without affecting the 

optimization problem [8]. Ultimately, interference mitigation 

depends on the proper adjustment of antenna beamforming 

weights. 

Various ABF techniques have been proposed for 

interference mitigation. Polese et al. [9] studied different 

machine learning (ML) algorithms for predicting the number 

of users at each transmitter base station and provided vehicular 

traffic approaches according to the key performance indicator 

(KPI) for users in edge controller-based 5G architectures. Liu 

et al. [10] investigated the detection of anomalies in Quasi-

periodic time series (QTS), which are prevalent in the real 

world, using LSTM and CNN models. Paramasivan [11] 

proposed a beamforming method using hybrid neural network 
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architecture and an intelligent direction-finding approach. To 

implement ABF techniques, it is crucial to update weights and 

steer the beam in correspondence with the dynamic 

environment, which helps combat interference. Thus, various 

co-channel interference rejection techniques have been 

applied to wireless systems, as reported in the study [12]. 

The remainder of the paper is organized as follows. Section 

2 presents related work. Section 3 discusses the main 

contribution of the paper. The system model is described in 

Section 4, while the proposed methodology is formulated in 

Section 5. Section 6 reviews the concept of LSTM techniques, 

and Section 7 presents the dataset description. Results and 

discussion are provided in Section 8, and the paper concludes 

in Section 9. 

 

 

2. RELATED WORKS 

 

The beamforming patterns and waveforms design for 

adaptive arrays has been advent for the adaptive beamforming. 

In the delay and sum beamformer (DAS) which is also called 

Barlett beamformer, uses the delay and applies an amplitude 

weight to the output of each sensor results the sum of the 

signals in which data independent method has been used. 

Since the mitigation of interference is limited in this method 

such that the received signals are independent of data. 

In current plethora, the beamforming techniques are used 

data dependent methods more prolifically e.g., the MVDR 

beamformer [13] kept the interference to signal ratio (ISR) is 

as high when input signal-to noise ratio (SNR) is low. Capon’s 

method gives a consistent output to estimate the required 

signal in the presence of interference and noise without the 

knowledge of DOA. It is an adaptive technique in which 

steering vectors forms the patterns rely on the elements of 

antenna array, extracted through the full-wave analysis. In this 

paper the method is used to modify two well-known 

beamforming approaches, named the null steering 

beamforming and the MVDR method. Both advance 

techniques are applicable to model a realistic scenario of a 

microstrip antenna array in a planar structure, and thus, both 

polar angles and azimuth angles of the main lobe and nulls 

directions are controlled [14], In addition to it, by applying the 

extraction of features in hierarchical manner, the MVDR 

beamformer approach is capable of predicting the both 

temporal and spatial frameworks in the form of sequential data. 

By minimizing the synthetic data pre-processing tasks, the 

Finite impulse response (FIR) filter estimates the power 

spectral density of a time series signal. The FIR filter then 

diminishes all the input signal frequencies. The Capon 

beamformer has better resolution and interference mitigation 

quality as compared to the conventional data-independent 

beamformers. As the traffic data is exploded from last few 

years, the data dependent techniques become more notorious. 

The prevalent methods for the prediction of traffic are much 

useful in time series models, which depends on the previous 

values of data traffic to forecast the upcoming one [15]. 

Nevertheless, the recurrent neural networks (RNNs), or say 

simple RNN and gated recurrent unit (GRU) are the traditional 

methods which are not able to recognize the long-term 

dependencies in various scenarios of V2I. The use of these 

techniques shows irrelevant behaviors of moving vehicles and 

pedestrians on the road [16, 17]. Consequently, an explicit 

form of structure of RNN, the LSTM have formulated to 

concentrate on these limitations in context of prediction time 

series data [18]. Over the past few years, the LSTM network 

have been successfully implemented and expand its 

applications in traffic prediction, speech processing, robotics, 

natural language processing [19-21]. 

Moreover, evaluating RNNs in the form of LSTM, we also 

explain the NAR network approach as a prediction technique 

to diminish the interference. In a 5G based V2I network, 

forecasting the interference based time series signal, that are 

nonstationary and noisy, is a crucial problem. In this 

perspective both LSTM and NAR based methods are likely to 

give the output based on the previous values of inputs. This 

possibility has been explored in our present work [22, 23]. 

 

 

3. MAIN CONTRIBUTION 

 

Our study introduces an innovative approach within a V2I 

network, which utilizes both an MVDR beamformer and a 

NAR-based time series forecasting method to anticipate the 

beamformed signal. 

• The cause of pedestrian user moving with a slow speed 

has been considered for the first time in this paper. 

• In this paper, a time delay MVDR beamforming 

technique is utilized to direct the beam towards the 

intended direction. Additionally, a Finite Impulse 

Response (FIR) filter is implemented at the output 

components of every sensor. 

• The problem of mismatching of the spatial signature 

for non-stationary user has been resolved through the 

proposed approach. 

 

 

4. SYSTEM MODEL 

 

 
 

Figure 1. The proposed V2I scenario 

 

A beamforming model for a Vehicle-to-Infrastructure (V2I) 

scenario using a multi-antenna configuration. Specifically, 

each base station (BS) consists of a uniform linear array (ULA) 

containing N transmitters and receivers, while the user 

elements (UEs) are assumed to have a single antenna and act 

as the beamformer for their signals is shown in Figure 1. 

Thus, the signal is received at the user elements from the 

beamformer output is given by [24]. 

 

R(t) = 𝑉𝐻X(t) (1) 

 

where, t denotes time steps of the received signal directed at 

the user element based array sensor [X(t)=X1(t), ……, XN(t)]T 

is the Nx1 complex values of vector, V=[v1,…vN]T which is 
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assumed as a weight vectors of complex variables (.)H and (.)T 

provides the Hermitian transpose and transpose respectively. 

 

X(t) = 𝐂d(t) + I(t)n(t) (2) 

 

Cd(t), I(t), and n(t) are independent variables statistically for 

the desired user signal, interference and noise respectively. In 

the system model slow fading channel case is applicable, as 

the channel coherence time relatively large as compared to 

delay requirement of the V2I scenario. In this network, the 

phase and amplitude change imposed by the channel assumed 

to be constant roughly over a time period so that the vector 

Cd(t), is given by: 

 

𝐂d(t) = C(t)𝑏𝑠 (3) 

 

where, C(t) is the complex variables of the signal and bs is its 

Nx1 spatial RSU’s symbols which represents the wave front 

of UE, in such case Eq. (2) can be rewritten as: 

 

X(t) = C(t)bs + I(t) + n(t) (4) 

 

To obtain the beamforming vector optimally at the user, it 

is essential to maximize the signal to interference plus noise 

ratio (SINR) [25]. 

 

SINR =
VHAsV

VHAi+nV
 (5) 

 

where, As = E{Cd(t)Cd
H(t)}. 

 

Ai+n = [E{I(t) + n(t)(I(t) + n(t)]H (6) 

 

where, As and Ai+n are NxN signal to interference plus noise 

covariance metrices respectively and E{.} represents 

expectation value used in statistics, normally As is considered 

as a rank matrix with values arbitrarily depends on the fading 

signal, i.e., 1≤rank {As}≤N. Consider a slow fading desired 

signal at the user side, then, 

 

As = σs
2bsbs

H (7) 

 

where, σ𝑠
2 = {E|C(t)|2}, the rank {As} = 1 is considered in 

this case and Eq. (5) becomes: 

 

SINR =
σs

2|VHbs|2

VHAi+nV
 (8) 

 

By maximizing the Signal-to-Interference-plus-Noise Ratio 

(SINR) in Eq. (5), we can determine the optimal weight vector. 

This optimization approach enables us to adjust the array 

properties to achieve a distortionless response for the 

beamformed signal while simultaneously minimizing the 

output interference and noise power. 

 

min
𝑤

 𝑉𝐻A𝑖+𝑛V subject to 𝑉𝐻A𝑠V = 1 (9) 

 

Thus, when the rank of signal is 1 in this case, the Eq. (9) 

can be rewritten as: 

 

min
𝑤

 𝑉𝐻A𝑖+𝑛V subject to 𝑉𝐻𝑏𝑠V = 1 (10) 

 

This is called as minimum variance distortionless response 

(MVDR) beamforming. The explanation to Eq. (9) is given as 

the following eigen value problem: 

 

Ai+n V = λ AsV (11) 

 

where, λ stands eigenvalue that corresponds to Eq. (11) and 

are real numbers which are generally no-negative in nature that 

belongs to positive semidefinite of Ai+n and As, Now the 

optimal weight can be expressed in the form of: 

 

Vopt = Ƥ {𝐴𝑖+𝑛
−1 A𝑠} (12) 

 

where, Ƥ(.) is the principal eigenvector operator of matrix Eq. 

(12) can be simplified for rank one signal source is shown as: 

 

V𝑜𝑝𝑡 = 𝑃{𝐴𝑖+𝑛
−1 b𝑠𝑏𝑠

𝐻} = β 𝐴𝑖+𝑛
−1 b𝑠 (13) 

 

Here, the constant can be obtained from the MVDR 

constraint vopt
H bs = 1, in Eq. (10) and is equal to ꞵ [26, 27]. 

In realistic scenarios, the correct values of matrix Ai+n is not 

obtained due to randomness of channel but it can be estimated 

by assumptions, so that the estimated values directed to 

optimization problems Eq. (9) and Eq. (10), its estimation 

should be used in optimization problems (9) and (10) than 

exact value. 

Adaptive beamforming is generally applicable for canceling 

interference and hence it could be reasonable to base the 

criterion for optimization for the power at the output of the 

beamformer such that it is reduced by weight-set solution. 

 

 

5. PROPOSED METHODOLOGY 

 

The proposed methodology for predicting the beamformed 

signal can be divided into several stages, as shown in the 

Figure 2. Firstly, a scenario is initialized using the given data, 

as discussed in Section 4. Next, the data is preprocessed by 

normalizing the variables due to their complex nature. 

Following this, noise is added to the raw signal data. In the 

next stage, the signal is fed into a Long Short-Term Memory 

(LSTM) and Nonlinear Autoregressive Network (as indicated 

in the diagram, only LSTM is shown), and then forwarded to 

the fully connected layers for further processing. The weights 

are trained, and the network learns the dependencies of the 

signal based on the input parameters, including incident and 

azimuthal angles, as well as the number of antenna elements. 

This stage is vital and little bit complex due to the 

configuration of network parameters, which includes the 

learning rate, number of hidden layers, dropout factor and 

amount of data is used for training and testing. The values of 

these parameters are interdependent, and even small changes 

can result in significant deviations in the output. The network 

reaches the output phase where it obtains the target value, and 

if it meets the set value, the SINR mentioned in Eq. (8) is 

maximized. If not, the network reverts to the LSTM model and 

updates its weights until it achieves the final target value. This 

process continues until the corresponding signals on the graph 

coincide with the original signal, and the desired RMSE value 

is calculated. To predict the required waveform of the raw 

signal, the LSTM network is applied. 

To calculate the desired RMSE value, the predicted 

waveform of the input signal is generated using the LSTM 

network. 
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Figure 2. The proposed algorithm 

 

The parameters used in this study follow [28, 29] and 

pertain to the scenario of roadside units (RSUs) with a height 

of approximately 25m, operating at 700MHz bandwidth, and 

consisting of 64 antenna elements with a noise level of 5dB. 

The distance between RSUs is 200m, and the user element 

includes 64 antenna elements operating at the same frequency 

with a power of 23dBm. Users may include pedestrians 

carrying mobile handsets with a speed of about 4km/hr and 

vehicles moving at a speed of 30km/hr. Because of multipath 

propagation, the user element has a noise figure of 7dB. In 

non-line-of-sight (NLOS) scenarios, the signal is distorted and 

causes severe interference compared to line-of-sight (LOS) 

scenarios. In order to reduce interference, an adaptive 

beamforming technique is used with an MVDR approach that 

places nulls at certain angles. The final beamformer relies on 

the regression capability of a LSTM/Neural Network-based 

regressor, which is necessary to meet the high SINR and 

throughput demands of a 5G system. This is achieved by 

predicting the signal in advance using MVDR weights, which 

automatically adjust the beam direction by modifying the 

azimuthal angles that are crucial to the beamforming technique. 

0° angle of elevation [30]. The managerial implication is to 

implement the methodology according to the guidelines for 

evaluation of radio interface technologies for IMT-2020. The 

proposed scenario of Vehicular to infrastructure (V2I) 

supports high data rates at low latency which is according to 

the user’s demands in multiple user environments. It enables 

for a wide range of services for the fifth generation (5G) 

mobile networks including enhanced mobile broadband 

services (eMBB), massive Machine Type Communications 

(mMTC), and URLLC (Ultra Reliable Low Latency 

Communications). In the V2I scenario number of roadside 

units (RSU’s) i.e., 5G antennas are mounted and the user 

element (UE) vehicles are moving around it. Due to the 

movement of vehicles in between the RSU’s and UE there is 

angle ambiguity occurs causing interference in the baseband 

signal. This interference results the low signal to interference 

noise ratio (SINR) and thus interference is to be detected by 

using the adaptive beamformer using the minimum variance 

distortionless response beamformer (MVDR). To predict the 

interference in advance a neural network- based time series 

forecasting method is used. It accepts the time varying data in 

terms of complex variables as a baseband signal and after 

applying the nonlinear auto regressive (NAR) neural network 

and long short-term memory (LSTM) based techniques, the 

interference is to be detected. To forecast the interference in a 

V2I scenario, a RMSE metric is adopted whose value should 

be closer to zero. 

 

 

6. OVERVIEW OF LONG-SHORT TERM MEMORY 

(LSTM) 

 

RNN-based LSTM networks are ideal for addressing data-

dependent problems that require recognition of previous input 

for further processing and prediction of the next state. This 

allows for the structure of the hidden layer to be adjusted based 

on the output. The proposed LSTM structure, as depicted in 

Figure 3, illustrates this concept [31]. The proposed LSTM 

structure is a type of recurrent neural network (RNN) 

architecture that is designed to overcome the vanishing 

gradient problem in traditional RNNs. It has become popular 

in many natural languages processing (NLP) and speech 

recognition tasks due to its ability to capture long-term 

dependencies. 

 

 
 

Figure 3. Basic architecture of LSTM 

 

The basic building block of an LSTM is a memory cell, 

which can store information for an extended period of time. It 

is controlled by three gates: the input gate, output gate, and 

forget gate. These gates regulate the flow of information into 

and out of the cell, allowing the LSTM to selectively update 

its memory based on the input and the task at hand. 

The input gate controls how much new information is 

allowed into the memory cell and is usually implemented as a 

sigmoid function. The forget gate controls how much 

information is removed from the cell and is also implemented 

as a sigmoid function. The output gate controls how much 

information is output from the cell and is usually implemented 

using a combination of a sigmoid function and a hyperbolic 
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tangent (tanh) function. The structure of an LSTM typically 

consists of multiple memory cells arranged in a chain, with 

each cell connected to the previous and next cells via the gates. 

The input to the LSTM is usually a sequence of vectors, and 

the output is a sequence of vectors that represent the hidden 

state of the LSTM at each time step. Overall, the LSTM 

architecture allows for more precise control over the flow of 

information in and out of the memory cells and has been 

shown to be highly effective for a wide range of sequence 

prediction tasks. 

The gate It acts an input gate decides which part of input is 

get processed further to update the cell. After updating the cell 

the forget gate ft take decision which part of the earlier cell will 

be dumped out while the output gate Ot can be considered as 

output. Where xt and Ct denote the input data at time t and the 

memory unit respectively. Assume that xt and ht denotes the 

inputs and outputs at present time-instance, ℎ𝑡−1 corresponds 

to output of the previous instance of time, denotes the 

activation function known as sigmoid activation function, 

and Ⓢ  denotes the Hadamard product, the basic 

representations of the LSTM model are shown in Figure 3. 

 

𝑓𝑡 = 𝜎(𝑊𝑓 𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) (14) 

 

𝐼𝑡 = 𝜎(𝑊𝐼𝑥𝑡 + 𝑈𝐼ℎ𝑡−1 + 𝑏𝐼) (15) 

 

𝑂𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (16) 

 

𝐶̃=𝑓𝑡Ⓢ𝐶𝑡−1 (17) 

 

ℎ𝑡=𝑂𝑡Ⓢtanh𝐶𝑡 (18) 

 

(Wf, WI, Wo), (Uf, UI, Uo) and (bf, bI, bo) stands for the 

recurrent weights, input weights, and biases for each gate 

respectively. As precisely, the LSTM networks consists of 

different replicas of standard memory blocks, and every 

component of block comprised a memory cell and three 

different types of gates (input gate, output gate, and forget gate. 

The cell is the essential portion of LSTM memory and is viable 

for transfer of data into different steps of time [32]. 

This network resolves the vanishing gradient problem and 

provides wide range of tuning parameters like learning rate, 

input, output and biases. They also handled the long-term 

dependencies in a very effective manner. It can handle 

complex, non-linear, sequential data in a very simpler form. 

But they are not suitable for online learning task like 

prediction and classification in which sequential data is not 

available. It needs high memory bandwidth because linear 

layers are available in cells state, so the implementation 

hardware system is inefficient. 
 

 

7. DATASET DESCRIPTION 
 

The dataset consists of Nx1 time series-based vector input 

represents weights of beamformer corresponds to N rows 

contains one column and 361 values was considered as a 

beamformed signal output. The departed signal from the 

transmitter having complex value is received on an array of 64 

elements from the direction of azimuthal angle 0° and 45° 

elevation. To calculate the mean square error, the weights of 

the signal impinging on an array with the addition of noise is 

generated as a data which is based on the scenario discussed 

in section 3. Each point of data are complex values denoted by 

either a two-dimensional coordinate according to the 

requirement of spatial geometry for V2I applications. The 

partitioning of the data to train a LSTM network for the 

prediction of interference is divided into three parts: (I) A layer 

acts as an input is connected completely which is a sequences 

of positions of the moving pedestrian and vehicles, such that 

each value corresponds to a multi-dimensional vector; (II) The 

processed sequence then sent to the critical section of the 

interference model; (III) finally, the fully connected output 

layer maps the last LSTM output layer at each time-step. It is 

necessary to train the data for reducing the loss function in 

terms of normalize mean square error (NMSE) where the input 

Nx1 one dimensional series vector contains the complex value 

weights wi. The training signal is considered as the received 

signal impinging on the array to train the network. Now apply 

the time series forecasting LSTM based method to predict the 

future values of time steps using the sequence to sequence 

regression concept. Therefore, the LSTM network learn and 

predict the values of the desired signal in succeeding time step 

of the input sequence. After that LSTM predicted the 

beamformed signals corresponds to the output as a number of 

beamforming weights. The output of the network is in the form 

of cell array in which every element is a single time step. 

Reshaping of the data is a row vector and then data splitting is 

done in to training and testing phase in 80-20% ratio, after that 

to avoid the overfitting data is fit into the network. The 

standard form of training data is set to have zero mean and 

unity variance. During the testing phase the data should be in 

the same format as the parameters of training data are set for 

the prediction. Train Network function is used in MATLAB 

2020a to train the data. Here the outcome of the training is used 

for beamformed signal to predict the three cells, since they 

have been deployed in to three different regions, the scattered 

interference profiles in terms of amplitude and number of 

iterations of signal at the RSU’s. The forecast is one-step 

ahead for the prediction of number of iterations with the 

oscillating nature of the interference, implies that we are using 

previous values to estimate the DoA for the next time slot. 

Here, the predictions are showing good results than past 

calculations when updates the network with observed values 

of parameters than the predicted values. So, to compute the 

performance of the proposed architecture, we compute the 

interference on average basis, thus the data is synthetically 

generated data and not easy to calculate at instances, so we 

choose the root mean square error (RMSE) of this quantity. 

For the ease of calculation, it is then again normalized which 

is the metric to measure accuracy of the prediction algorithm, 

and is given by: 

 

RMSE=√1

x̅

∑  (x̃t−xt)2M
t=1

M
 (19) 

 

Here, M is number of instances of total values, x̃t and xt is 

the predicted value at time t and x̅ denotes its mean. By using 

this method, it is easier for comparison of results showing the 

accuracy of the proposed technique with the existing one. The 

implementation of the interference prediction algorithm is 

done in MATLAB 2020a version. 

 

 

8. RESULTS AND DISCUSSION 

 

We discuss the performance of two networks in terms of 

normalized power and RMSE in the forecast phase. Figures 
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shows the comparative study of root mean square error values 

for NAR model with the LSTM model. The impact of 

significant array parameters on the predictor's error 

performance has been illustrated. This section gives valuable 

insights on the optimal array parameters that lead to a nearly 

perfect beamformed signal, thus enhancing network 

performance. It accomplishes this by appropriately training 

weights to predict the interference signal and displaying the 

network's error output. Figure 4a shows the baseband signal 

which is applied at the input of the MVDR beamformer. A 

comparative inspection of Figure 4b and Figure 4c. When the 

incident angle parameter of the received signal was changed, 

it was observed that the beamformed signal predicted by NAR 

showed greater similarity to the baseband signal than the one 

predicted by LSTM. 

It is evident from a sharper dip in the normalized power of 

the beamformed signal in Figure 4c, the reason for a less 

similar forecasted beam pattern in the case of LSTM can be 

attributed to its more intricate training and updating process, 

which is inherent to the LSTM module. The correlation 

between the forecasted signal and the baseband signal's 

similarity was found to be directly linked to the RMSE 

obtained during the testing phase. As a result, only the RMSE 

values have been presented for the sake of conciseness. Figure 

4c shows a portion that was predicted by the NAR regressor 

with a sufficiently low error in the testing phase. We can 

observe from Figure 4d and Figure 4e the effect of weight 

update on the prediction performance of LSTM network. The 

top section displays the normalized power of the predicted 

signal before and after the update, while the bottom section 

demonstrates the impact of the update on the RMSE during the 

testing phase, which is significantly reduced by several orders 

of magnitude in the latter case. The forecasted results shown 

in Figure 4a to Figure 4e corresponds to the case when 

received signal incident angle was varied from 40 to 100 

degrees keeping all other parameters fixed. In Figure 4d 

training signal before forecast gives the nulls or the dip of 

signal in the range between 55 to 60. By visualizing the graph 

also depicts the slight variation between the observed signal 

and forecasted signal. So, the resultant RMSE value is 5.176 

which is not feasible for the network performance. While 

updating the weights of LSTM network of the Figure 4e the 

observed and predicted values of the signal coincides with 

each other, thus it gives better performance as earlier when it 

was not updating the weights. After updating the weights, the 

RMSE value reached closer to zero, which is 1.2475. The vital 

role of an LSTM model is governed by a memory cell called a 

‘cell state’. A cell state determines the requirement from 

previous cell state to next cell state. It always updating the data 

capable to manage which information is useful in the system 

and which information is dropped out. If some information is 

required it will update or add the information with the help of 

three gates. So, we have three gates forget gate, input gate and 

output gate. All three gates are placed inside the LSTM cell. 

The RMSEs of LSTM and NAR regressor are depicted in 

Figure 5a when incident angle was varied from 40 to 100 

degrees, it is considered as a primary input showing the three 

basic metric in terms of min, average and maximum value. So, 

it can be observed that the RMSEs of both regressor are 

comparable from Figure 5a and 5b. Since, the experiments 

were done several times with k-fold cross validation method 

(k=10), in Figure 5a, average value of the RMSE obtained in 

k-folds has been plotted. For the reader’s reference, Figure 5b 

showing maximum, minimum, and average values of the 

RMSE obtained using NAR network. Similarly, the RMSEs 

obtained when primary input for the beamformer was 

azimuthal angle have been shown in Figure 6a to 6c. In this 

case NAR exhibits better performance than LSTM. Also, 

Table 1 depicts the corresponding azimuthal angle span. 

 

 
 

Figure 4a. Baseband signal 

 

 
 

Figure 4b. LSTM forecasted beamformed signal 

 

 
 

Figure 4c. Forecasted NAR signal 

 

 
 

Figure 4d. Training signal before forecast 
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Figure 4e. Forecasted signal after training 

 

 
 

Figure 5a. RMSE’s of incidence angle (LSTM) 

 
 

Figure 5b. RMSE’s of incidence angle (NAR) 

 

 
 

Figure 6a. RMSE comparison (LSTM and NAR) 

 
 

Figure 6b. RMSE of azimuthal angle (LSTM) 

 

 
 

Figure 6c. RMSE of azimuthal angle (NAR) 
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Figure 7a. RMSE for no. of elements (LSTM) 

 

 
 

Figure 7b. RMSE for no. of elements (NAR) 

 

Table 1. Designation for azimuthal angles 

 

Angle Span Designated as 

-30 to+30 1 

-45 to+45 2 

-60 to+60 3 

-70 to+70 4 

-80 to+80 5 

-90 to+90 6 

-100 to+100 7 

-110 to+110 8 

-120 to+120 9 

-130 to+130 10 

 

The NAR is a is a non-parametric method that can support 

dynamic inputs based on times series data. It can also perform 

multistep predictions for closed loop networks. This network 

can continue to predict the output values by using internal 

feedback even when external feedback is missing. But it 

cannot work on stationary data, otherwise there is no meaning 

for the approximation of neural networks. The model uses the 

number of delays which causes the system more complex, so 

it affects the efficiency of learning. It is not applicable for open 

loop networks. 

It lags The NAR predicts the future values of a time series 

data on the basis of past values. It. It can fulfill the universal 

approximation theorem for neural network. Perhaps the 

important significant advantage of LSTM scheme can be 

observed from Figure 7a and Figure 7b where number of 

elements of antenna are varied from 4 to 64. Here, Root means 

square error of NAR regressor is larger than the LSTM 

regressor, thus from the respective figures depicting that the 

LSTM performs better as compared to NAR. It is probable that 

the LSTM module handles the complexity arising from 

increase in the number of antenna elements, while the NAR 

module falls short since it lacks the ability to learn 

dependencies. Therefore, in a practical scenario, where, the 

antenna array/sensor elements are huge in numbers, it would 

be advisable to apply an LSTM based forecast stage for 

beamforming. 

 

 

9. CONCLUSIONS 

 

Based on the findings presented in the preceding section, it 

can be inferred that neural network-based regressors can 

effectively predict beamformed signals. Data produced by 

conventional beamforming techniques, such as MVDR, can be 

utilized for training purposes. Additionally, LSTM shows 

potential in predicting beamformed signals since there are 

various short- and long-term dependencies present in V2I 

scenarios that the regressor must learn. In this study, LSTM 

performed better than NAR-based regressors, particularly 

when the number of antenna elements was high, for the 

considered V2I scenario. In the future, there is an opportunity 

to optimize the architecture of the LSTM module with the goal 

of reducing computational complexity while improving the 

accuracy of the beamforming forecasts. In this paper real time 

data collection is a tedious task, due to the installation of cloud 

servers and confined to limited resources. if the vehicular 

communication scenario will make it more complex the cost 

of sharing the messages between RSU’s and UE is not easily 

feasible, so it is assumed that the information is not delay and 

error free. For high mobility vehicular communication 

scenario, it is important to think about the practical limitation 

imposed by the harsh V2I environment. Furthermore, 

exploring the wideband beamforming techniques with deep 

reinforcement learning agent-based system network appears to 

be an interesting future research plethora. 
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